Abstract

The pulse shaping dynamics of a diode-pumped laser oscillator with active multipass cell was studied experimentally and numerically. We demonstrate the generation of high energy subpicosecond pulses with a pulse energy of up to 25.9µJ at a pulse duration of 928fs directly from a thin-disk laser oscillator. These results are achieved by employing a selfimaging active multipass geometry operated in ambient atmosphere. Stable single pulse operation has been obtained with an average output power in excess of 76W and at a repetition rate of 2.93MHz. Self starting passive mode locking was accomplished using a semiconductor saturable absorber mirror. The experimental results are compared with numerical simulations, showing good agreement including the appearance of Kelly sidebands. Furthermore, a modified soliton-area theorem for approximating the pulse duration is presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  2. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, "Powerful red-green-blue laser source pumped with a mode-locked thin disk laser," Opt. Lett. 29, 1921 (2004).
    [CrossRef] [PubMed]
  3. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, "Micromachining with a 50W, 50 J, subpicosecond fiber laser system," Opt. Express 14, 546-551 (2006).
    [CrossRef]
  4. P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 409-414 (2007).
    [CrossRef]
  5. S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, "Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level," Opt. Express 16, 6397 (2008).
    [CrossRef] [PubMed]
  6. F. Röser, D. Schimpf, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100 J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
    [CrossRef] [PubMed]
  7. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
    [CrossRef]
  8. S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072 (2006).
    [CrossRef] [PubMed]
  9. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
    [CrossRef] [PubMed]
  10. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. J. Lederer, and U. Morgner, "Passively modelocked and cavity-dumped Yb : KY(WO4)2 oscillator with positive dispersion," Opt. Express 15, 16017-16021 (2007).
    [CrossRef] [PubMed]
  11. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, "60W average power in 810fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367 (2003).
    [CrossRef] [PubMed]
  12. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006).
    [CrossRef] [PubMed]
  13. A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
    [CrossRef]
  14. A. M. Scott, G. Cook, and A. P. G. Davies, "Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry," Appl. Opt. 40, 2461 (2001).
    [CrossRef]
  15. M. Kumkar, "Laser Amplification System," U.S. Pat. 6765947, U.S. Pat. (2006).
  16. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. H. Sutter, and T. Dekorsy, "Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 J by use of an active multipass geometry," Opt. Lett. 33, 726-729 (2008).
    [CrossRef] [PubMed]
  17. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J.Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
    [CrossRef]
  18. F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
    [CrossRef]
  19. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses," J. Opt. Soc. Am. B 14, 650 (1997).
    [CrossRef]
  20. M. Haiml, R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79, 331-339 (2004).
    [CrossRef]
  21. F. X. Kärtner and U. Keller, "Stabilization of soliton like pulses with a slow saturable absorber," Opt. Lett. 20, 16 (1995).
    [CrossRef] [PubMed]
  22. C. Hänninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]
  23. F. X. Kärtner, J. Aus der Au, and U. Keller, "Mode-Locking with Slow and Fast Saturable Absorbers - What’s the Difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
    [CrossRef]
  24. S. M. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
    [CrossRef]

2008 (2)

2007 (3)

2006 (2)

2005 (2)

A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

2004 (2)

2003 (1)

2001 (1)

1999 (1)

1998 (1)

F. X. Kärtner, J. Aus der Au, and U. Keller, "Mode-Locking with Slow and Fast Saturable Absorbers - What’s the Difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

1997 (1)

1996 (2)

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

1995 (1)

1994 (1)

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

1992 (1)

S. M. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Apolonski, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Arisholm, G.

Aschwanden, A.

Baer, C. R.

Baum, P.

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 409-414 (2007).
[CrossRef]

Brauch, U.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Brunner, F.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Cook, G.

Davies, A. P. G.

Dekorsy, T.

Dewald, S.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Dörring, J.

Emons, M.

Engqvist, A. G.

Fallnich, C.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Franco, M. A.

Giesen, A.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Golling, M.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Grange, R.

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006).
[CrossRef] [PubMed]

M. Haiml, R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79, 331-339 (2004).
[CrossRef]

Grillon, G.

H¨ugel, H.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79, 331-339 (2004).
[CrossRef]

Hänninger, C.

Häring, R.

Hashimoto, S.

Hönninger, C.

Innerhofer, E.

Ito, H.

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, J. Aus der Au, and U. Keller, "Mode-Locking with Slow and Fast Saturable Absorbers - What’s the Difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

F. X. Kärtner and U. Keller, "Stabilization of soliton like pulses with a slow saturable absorber," Opt. Lett. 20, 16 (1995).
[CrossRef] [PubMed]

Keller, U.

S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, "Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level," Opt. Express 16, 6397 (2008).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, "Powerful red-green-blue laser source pumped with a mode-locked thin disk laser," Opt. Lett. 29, 1921 (2004).
[CrossRef] [PubMed]

M. Haiml, R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79, 331-339 (2004).
[CrossRef]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, "60W average power in 810fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367 (2003).
[CrossRef] [PubMed]

C. Hänninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

F. X. Kärtner and U. Keller, "Stabilization of soliton like pulses with a slow saturable absorber," Opt. Lett. 20, 16 (1995).
[CrossRef] [PubMed]

Kelly, S. M.

S. M. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Killi, A.

Kitamura, K.

Kleinbauer, J.

Kopf, D.

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Kumkar, M.

Kurimura, S.

Lang, T.

Lederer, M. J.

Limpert, J.

Maas, D. J.

Marchese, S. V.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

Moser, M.

Moshammer, R.

Mysyrowicz, A.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Neuhaus, J.

Nibbering, E. T. J.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Opower, H.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Ortac, B.

Palmer, G.

Paschotta, R.

Prade, B. S.

Rademaker, K.

Röser, F.

Schimpf, D.

Schröter, C. D.

Schultze, M.

Scott, A. M.

Siegel, M.

Steinmann, A.

Südmeyer, T.

Sutter, D. H.

Tünnermann, A.

F. Röser, D. Schimpf, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100 J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Ullrich, J.

Usami, T.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Voss, A.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Weiler, S.

Wittig, K.

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

Zewail, A. H.

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 409-414 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Appl. Phys. B (2)

A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped highpower solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79, 331-339 (2004).
[CrossRef]

Electron. Lett. (1)

S. M. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kärtner, J. Aus der Au, and U. Keller, "Mode-Locking with Slow and Fast Saturable Absorbers - What’s the Difference?" IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 2, 540-556 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

New J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. H. Sutter, and T. Dekorsy, "Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 J by use of an active multipass geometry," Opt. Lett. 33, 726-729 (2008).
[CrossRef] [PubMed]

F. X. Kärtner and U. Keller, "Stabilization of soliton like pulses with a slow saturable absorber," Opt. Lett. 20, 16 (1995).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, "60W average power in 810fs pulses from a thin-disk Yb:YAG laser," Opt. Lett. 28, 367 (2003).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, "Powerful red-green-blue laser source pumped with a mode-locked thin disk laser," Opt. Lett. 29, 1921 (2004).
[CrossRef] [PubMed]

A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, "High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator," Opt. Lett. 30, 1891-1893 (2005).
[CrossRef] [PubMed]

S. Dewald, T. Lang, C. D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, and U. Morgner, "Ionization of noble gases with pulses directly from a laser oscillator," Opt. Lett. 31, 2072 (2006).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, "Pulse energy scaling to 5 J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006).
[CrossRef] [PubMed]

F. Röser, D. Schimpf, B. Ortac, K. Rademaker, J. Limpert, and A. Tünnermann, "90W average power 100 J energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230-2232 (2007).
[CrossRef] [PubMed]

PNAS (1)

P. Baum and A. H. Zewail, "Attosecond electron pulses for 4D diffraction and microscopy," PNAS 104, 409-414 (2007).
[CrossRef]

Other (3)

L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, "Micromachining with a 50W, 50 J, subpicosecond fiber laser system," Opt. Express 14, 546-551 (2006).
[CrossRef]

M. Kumkar, "Laser Amplification System," U.S. Pat. 6765947, U.S. Pat. (2006).

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J.Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic design of the passively mode-locked Yb:YAG thin-disk laser with angular multiplexing. For reasons of clarity, in this figure only four passes through the AMC have been plotted. The actual experimental setup contained 11 or 13 passes through the AMC with a total cavity length of 44m for 11 passes and 51m for 13 passes. Six dispersive mirrors were included in the AMC design with a total GDD of -0.180ps2 per cavity round trip for 11 passes through the AMC, respectively. The quarter wave plate allowed for arbitrary OC rates. The lengths given specify the distance in between two arrows in millimeters, therefore possibly including some bounces over plan mirrors. Furthermore the radius of curvature for every concave mirror is also given in millimeters.

Fig. 2.
Fig. 2.

Pulse length over pulse energy for experiments with 11 passes through the AMC at various pump powers and for operation with different SESAMs, showing a reciprocal dependence of the pulse width on the pulse energy. The range of stable CWML is highlighted for each SESAM by a coloured bar (grey, black, blue, and white) and the smallest and largest pulse energies, at which stable mode locking was observed, are each marked by a vertical arrow. For pulse energies lower than the specified range QML was observed, whereas the upper limit was set by the onset of double pulsing. The pulse length as expected from a modified soliton area theorem is also included in this figure, as well as the results given by numerical simulations that simulate the evolution of the electric field inside the laser cavity.

Fig. 3.
Fig. 3.

Output power for the experiments with SAM-B1. Operation with the occurrence of QML and double pulses is highlighted. The left inset shows a profile of the pump spot, whereas the right inset shows the laser mode, as measured with a camera based system just before the SESAM, for operation with the largest pulse energies.

Fig. 4.
Fig. 4.

Optical spectra for the experiments with SAM-B1 at various pump powers from 67W to 165W as listed in Tab. 2. The optical bandwidth is indicated at the right axis, assuming an ideal sech2 fit of the optical spectrum.

Fig. 5.
Fig. 5.

Spectrum of experiment with 13 passes through the AMC. Kelly sidebands are clearly visible, agreeing well with the position of the Kelly sidebands as anticipated from the numerical simulation. In the numerical simulation (blue line), however, only GDD was included.

Fig. 6.
Fig. 6.

Pulse trace in the time domain (black solid line) and the instantaneous frequency (dashed blue line) as given by numerical simulation of the experiment with 13 passes through the AMC. The inset shows the measured rf-spectrum, showing sidebands which are about 25kHz apart from the carrier frequency. The amplitude of these sidebands was strongly dependent on the flow rate of the cooling mechanism of the TD, however without shifting in position.

Tables (2)

Tables Icon

Table 1. Parameters of the SESAMs, used in the mode locking experiments.

Tables Icon

Table 2. Results of the mode-locking experiments with various SESAMs and 11 passes through the AMC. For SAM-B1 the resulting parameters for experiments at varying pump powers are listed, whereas for the experiments with the other three SESAMs, only those measurements that resulted in stable CWML just before the onset of double pulsing are shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ SPM = 4 n 2 λ dz w 2 ,
γ SPM N img · 4 n 2 λ · π 2 λ .
R ( F ) = R ns ln ( 1 + R lin R ns · ( exp ( F F sat ) 1 ) ) F F sat exp ( F F 2 ) ,
τ P 1.76 · 2 β 2 ln ( 1 OC ) γ SPM E P , ext .

Metrics