Abstract

This paper reports on the finding of a critical working point in the sensitivity of hetero-modal interferometric optical sensors using spectral interrogation. At this point the theoretical sensitivity approaches infinity and the practical sensitivity will depend only on the measurement accuracy and noise sources present. If the critical condition is attained at a point of minimal power transfer, a phenomenon of splitting or bifurcation of the minimum dip is expected as sensing occurs. The conditions for attainment of these critical effects are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
    [CrossRef]
  2. R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Act. B: Chem. 61, 100-127 (1999).
    [CrossRef]
  3. R. Levy and S. Ruschin, "Single Channel Modal Interferometer Waveguide Sensor," IEEE Sensors, in process
  4. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006)
    [CrossRef] [PubMed]
  5. R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity," Sens. Act. B 124, 459-465 (2007).
    [CrossRef]
  6. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, "Use of highly elliptical core fibers for two-mode fiber devices," Opt. Lett. 12, 729-31 (1987).
    [CrossRef] [PubMed]
  7. H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber," Opt. Express 15,5711-5720 (2007).
    [CrossRef] [PubMed]
  8. J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Act. B 41, 207-211 (1997).
    [CrossRef]
  9. K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
    [CrossRef]
  10. J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
    [CrossRef]
  11. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
    [CrossRef]
  12. G. N. De Brabander, G. Beheim, and J. T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998).
    [CrossRef]

2007 (2)

R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity," Sens. Act. B 124, 459-465 (2007).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber," Opt. Express 15,5711-5720 (2007).
[CrossRef] [PubMed]

2006 (1)

2003 (1)

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

2001 (2)

J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

1999 (1)

R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Act. B: Chem. 61, 100-127 (1999).
[CrossRef]

1998 (1)

1997 (1)

J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Act. B 41, 207-211 (1997).
[CrossRef]

1993 (1)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
[CrossRef]

1987 (1)

Baets, R.

Beheim, G.

Bienstman, P.

Blake, J. N.

Boyd, J. T.

Brynda, E.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

Choi, H. Y.

Cottiera, K.

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

Ctyroky, J.

J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

De Brabander, G. N.

Debackere, P.

Dostalek, J.

J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
[CrossRef]

Gaoa, H.

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

Greve, J.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
[CrossRef]

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Act. B: Chem. 61, 100-127 (1999).
[CrossRef]

R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
[CrossRef]

Homola, J.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
[CrossRef]

J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Act. B 41, 207-211 (1997).
[CrossRef]

Huang, S. Y.

Kim, B. Y.

Kim, M. J.

Kooyman, R. P. H.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
[CrossRef]

Kunz, R. E.

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Act. B: Chem. 61, 100-127 (1999).
[CrossRef]

Lee, B. H.

Levy, R.

R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity," Sens. Act. B 124, 459-465 (2007).
[CrossRef]

Ruschin, S.

R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity," Sens. Act. B 124, 459-465 (2007).
[CrossRef]

Scheerlinck, S.

Shaw, H. J.

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

Voirina, G.

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

Wikib, M.

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

Appl. Opt. (1)

Opt. Express (2)

Opt. Lett. (1)

Sens. Act. B (5)

J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Act. B 41, 207-211 (1997).
[CrossRef]

K. Cottiera, M. Wikib, G. Voirina, H. Gaoa, and R. E. Kunz, "Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips," Sens. Act. B 91, 241-251, (2003).
[CrossRef]

J. Dostalek, J. Ctyroky, J. Homola,  et al., "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Act. B 76, 8-12 (2001).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B 74, 106-111, (2001).
[CrossRef]

R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity," Sens. Act. B 124, 459-465 (2007).
[CrossRef]

Sens. Act. B. (1)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, "Preformance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor," Sens. Act. B. 10, 209-217 (1993).
[CrossRef]

Sens. Act. B: Chem. (1)

R. G. Heideman and P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sens. Act. B: Chem. 61, 100-127 (1999).
[CrossRef]

Other (1)

R. Levy and S. Ruschin, "Single Channel Modal Interferometer Waveguide Sensor," IEEE Sensors, in process

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Calculated differential phase (bottom) and transfer power (top) for the hetero-modal MZI sensor shown in Fig. 2(A) for two values of sensed material refractive index nc1=1.33 and nc2=1.3301. Calculated sensitivity is about 200,000 [nm/RIU] around λ=656nm.

Fig. 2.
Fig. 2.

-Hetero-modal sensor configuration examples showing divergence in sensitivity. (A) - Singe mode Mach-Zehnder interferometer sensor. (B) - Single channel dual mode waveguide sensor, (C) - Michelson interferometer sensor.

Fig. 3.
Fig. 3.

Spectral sensitivity calculated for different values of the cover medium index nc . The circles show the calculated sensitivity from the numerical transfer power calculations using (1). The solid line shows the sensitivity using the first order approximation (7). Left graph shows the sensor sensitivity (nc0=1.33) and the right graph shows the wavelength shift Δλ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Sensitivity = Δ λ Δ n c
Φ ( λ , n c ) 2 π L η ( λ , n c ) λ = N π ; N = 1 , 2 , 3
Sensitivity = λ n c = Φ ( λ , n c ) n c Φ ( λ , n c ) λ = η ( λ , n c ) n c ( η ( λ , n c ) λ η ( λ , n c ) λ )
λ η λ = 0 η λ = η λ
α = 0.5 2 λ 2 ( η λ ) ; β = η ( n c , λ critical ) n c
Sensitivity = λ n c β 2 λ critical α ( λ critical λ )
Sensitivity = λ n c 1 2 β λ critical α ( n critical n c )
Sensitivity = [ β λ critical α ( n c n critical ) + Δ φ 2 π α L ] 1 2 ( n c n critical )
Φ ( λ , p 1 , p 2 , p 3 , . . . . . ) λ = 0

Metrics