Abstract

Evanescent-wave illumination is applied to synthetic-aperture microscopy on a transparent solid substrate to extend the resolution limit to λ/2(n+1) (where n is the substrate refractive index) independent of the lens NA. Using a 633 nm source and a 0.4 NA lens, a resolution to 150 nm (λ/4.2) is demonstrated on a glass (n=1.5) substrate. Further extension to ~74-nm resolution (λ/8.6) is projected with a higher index substrate (n=3.3).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbé, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873).
    [CrossRef]
  2. W. Lucosz, "Optical Systems with Resolving Powers Exceeding the Classical Limit," J. Opt. Soc. Am. 57, 932-941 (1967).
    [CrossRef]
  3. H. Nassenstein, "Superresolution by diffraction of subwaves", Opt. Commun. 2, 231-234 (1970).
    [CrossRef]
  4. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef] [PubMed]
  5. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
    [CrossRef] [PubMed]
  6. S. A. Alexandrov T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  7. V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Exp. 14, 5168-5177 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5168.
    [CrossRef]
  8. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008).
    [CrossRef]
  9. A. Neumann, Y. Kusnetsova, and S. R. J. Brueck, "Structured Illumination for the Extension of Imaging Interferometric Lithography," Opt. Express 16, 6785-6793 (2008).
    [CrossRef] [PubMed]
  10. D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic,  2, 764-774 (2001).
  11. G. E. Cragg and P. T. C. So, "Lateral resolution enhancement with standing evanescent waves," Opt. Lett. 25, 46-48 (2000).
    [CrossRef]
  12. S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
    [CrossRef] [PubMed]
  13. A. Vainrub, O. Pustovyy, and V. Vodyanoy, "Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser," Opt. Lett. 31, 2855-2857 (2006).
    [CrossRef] [PubMed]
  14. Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
    [CrossRef]
  15. J. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  16. V. Podolskiy and E. E. Narimanov, "Near-Sighted Superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  18. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
    [CrossRef] [PubMed]
  19. I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
    [CrossRef] [PubMed]
  20. D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968).
    [CrossRef]

2008 (2)

2007 (5)

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

2006 (2)

S. A. Alexandrov T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

A. Vainrub, O. Pustovyy, and V. Vodyanoy, "Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser," Opt. Lett. 31, 2855-2857 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2001 (1)

D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic,  2, 764-774 (2001).

2000 (3)

Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

J. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

G. E. Cragg and P. T. C. So, "Lateral resolution enhancement with standing evanescent waves," Opt. Lett. 25, 46-48 (2000).
[CrossRef]

1970 (1)

H. Nassenstein, "Superresolution by diffraction of subwaves", Opt. Commun. 2, 231-234 (1970).
[CrossRef]

1968 (1)

D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

1967 (1)

1873 (1)

E. Abbé, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873).
[CrossRef]

Abbé, E.

E. Abbé, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873).
[CrossRef]

Axelrod, D.

D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic,  2, 764-774 (2001).

Brueck, S. R. J.

Cragg, G. E.

Davis, C. C.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Elings, V. B.

Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Ghislan, L. P.

Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Hell, S. W.

S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

Hung, Y-J.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

Kusnetsova, Y.

Kuznetsova, Y.

Lee, H.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

Lucosz, W.

Narimanov, E. E.

Nassenstein, H.

H. Nassenstein, "Superresolution by diffraction of subwaves", Opt. Commun. 2, 231-234 (1970).
[CrossRef]

Nelson, D. F.

D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

Neumann, A.

Pendry, J.

J. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V.

Pustovyy, O.

Schwarz, C. J.

Smolyaninov, I. I.

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

So, P. T. C.

Sun, C.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Turner, E. H.

D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

Vainrub, A.

Vodyanoy, V.

Wu, Q.

Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Xiong, Y.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development Of Optical Hyperlens for Imaging Below the Diffraction Limit," Opt. Express 15, 15886-15891 (2007).
[CrossRef] [PubMed]

Arch. Mikrosc. Anat. Entwicklungsmech. (1)

E. Abbé, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873).
[CrossRef]

J. Appl. Phys. (1)

D. F. Nelson and E. H. Turner, "Electro-optic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide," J. Appl. Phys. 39, 3337-3343 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

H. Nassenstein, "Superresolution by diffraction of subwaves", Opt. Commun. 2, 231-234 (1970).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

S. A. Alexandrov T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

J. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

Q. Wu, L. P. Ghislan, and V. B. Elings, "Imaging with Solid Immersion Lenses, Spatial Resolution, and Applications," Proc. IEEE 88, 1491-1498 (2000).
[CrossRef]

Science (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007).
[CrossRef] [PubMed]

S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007).
[CrossRef] [PubMed]

Traffic (1)

D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic,  2, 764-774 (2001).

Other (1)

V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Exp. 14, 5168-5177 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5168.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical arrangements for IIM. a) IIM with a zero-order reference beam interferometrically reinjected in the back-pupil plane. b) Expanded view of illumination and detection configuration; c) Illumination through substrate to enhance the spatial frequency coverage; d) Rotated optical axis to collect higher spatial frequency information

Fig. 2.
Fig. 2.

Frequency-space visualization of IIM. a) Manhattan structure test pattern; scaled to different sizes as indicated; b) frequency space coverage for the structure with CD=180 nm which is resolved for the configuration of Fig. 1(b); c) frequency space coverage for the structure with CD=150 nm which requires the optical axis tilted configuration of Figure 1(c).

Fig. 3.
Fig. 3.

IIM with evanescent illumination and normal (untilted) collection. a) Reconstructed image of 180- and 170-nm CD structures b) a crosscut (green) compared with a crosscut of corresponding simulation (blue).

Fig. 4.
Fig. 4.

IIM of a 150 nm structure using evanescent illumination and a tilted optical system. a) High-frequency image obtained by evanescent wave illumination and tilted optical system; b) high-frequency image simulation and experiment; c) experimental and simulation cross-cuts of the high-frequency sub-images; d) experimental composite (full) image; e) simulation full image; f) experimental and simulation cross-cuts of the full images.

Fig. 5.
Fig. 5.

Available frequency space coverage for various optical systems.

Tables (1)

Tables Icon

Table 1. Resolution limits (grating half-pitch) for various optical configurations at widely available laser wavelengths. (all dimensions in nm).

Metrics