Abstract

The pixels that make up CMOS image sensors have steadily decreased in size over the last decade. This scaling has two effects: first, the amount of light incident on each pixel decreases, making optical efficiency, i.e., the collection of each photon, more important. Second, diffraction comes into play when pixel size approaches the wavelength of visible light, resulting in increased spatial optical crosstalk. To address these two effects, we investigate and compare three methods for guiding incident light from the microlens down to the photodiode. Two of these techniques rely on total internal reflection (TIR) at the boundary between dielectric media of different refractive indices, while the third uses reflection at a metal-dielectric interface to confine the light. Simulations are performed using a finite-difference time-domain (FDTD) method on a realistic 1.75-µm pixel model for on-axis as well as angled incidence. We evaluate the optical efficiency and spatial crosstalk performance of these methods compared to a reference pixel and find significant (10%) improvement for the TIR designs with properly chosen parameters and nearly full spatial crosstalk elimination using metal to confine the light. We also show that these improvements are comparable to those achieved by thinning the image sensor stack.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse, and B. A. Wandell, "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld," Proc. SPIE 5678, 1-13 (2005).
    [CrossRef]
  2. H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, "CMOS imager technology shrinks and image performance," IEEE Workshop on Microelectronics and Electron. Devices 7-18 (2004).
  3. F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
    [CrossRef]
  4. P. B. Catrysse, B. A. and Wandell, "Optical efficiency of image sensor pixels," J. Opt. Soc. Am. A 19, 1610-1620 (2002).
    [CrossRef]
  5. P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
    [CrossRef]
  6. G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
    [CrossRef]
  7. C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).
  8. D. N. Yaung, S. G. Wuu, H. C. Chien, T. H. Hsu, C. H. Tseng, J. S. Lin, J. J. Chen, C. H. Lo, C. Y. Yu, C. S. Tsai and C. S. Wang, "Air-gap guard ring for pixel sensitivity and crosstalk improvement in deep sub-micron CMOS image sensor," IEEE Intl. Electron. Devices Meeting 16.5 (2003).
  9. T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
    [CrossRef]
  10. T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
    [CrossRef]
  11. K. B. Cho, C. Lee, S. Eikedal, A. Baum, J. Jiang, C. Xu, X. Fan, and R. Kauffman, "A 1/2.5 inch 8.1 Mpixel CMOS Image Sensor for Digital Cameras," IEEE Intl. Solid-State Circuits Conf. 508-618 (2007).
  12. S. H. Lee, C. R. Moon, K. H. Paik, S. H. Hwang, J. C. Shin, J. Jung, K. Lee, H. Noh, D. Lee, and K. Kim, "The Features and Characteristics of 5-mega CMOS Image Sensor with Topologically Unique 1.7 μm x 1.7 μm Pixels," Symp. on VLSI Tech. 142-143 (2006).
  13. W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).
  14. W. G. Lee and J. S. Kim, "Comparison of Optical Properties in Al-and Cu-BEOL of CMOS Image Sensor Devices," Electrochem. Solid-State Lett. 9, G254-7 (2006).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, Orlando, 1985).
  16. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
    [CrossRef]
  17. P. B. Catrysse and B. A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," J. Opt. Soc. Am. A 20, 2293-2306 (2003).
    [CrossRef]
  18. D. M. Hartmann, O. Kibar, and S. C. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Opt. Lett. 25, 975-977 (2000).
    [CrossRef]
  19. K. Shinmou, K. Nakama, and T. Koyama, "Fabrication of Micro-Optic Elements by the Sol-Gel Method," J. Sol-Gel Sci. and Tech. 19, 267-269 (2000).
    [CrossRef]
  20. C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
    [CrossRef]
  21. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, (Artech House, Boston, 2000).
  23. OptiFDTD, Optiwave Systems, Inc.
  24. J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, and J. Pond, "Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors," Opt. Express 15, 5494-5503 (2007).
    [CrossRef] [PubMed]
  25. E. Hecht, Optics, (Pearson, San Francisco, 2002).
  26. A. R. Afshar and A. Thetford, "An experiment to measure frustrated total internal reflection," Eur J. Physiol. 3, 72-74 (1982).
  27. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).
  28. S. Iwabuchi, Y. Maruyama, Y. Ohgishi, M. Muramatsu, N. Karasawa, and T. Hirayama, "A Back-Illuminated High-Sensitivity Small-Pixel Color CMOS Image Sensor with Flexible Layout of Metal Wiring," IEEE Intl. Solid-State Circuits Conf. 1171-1178 (2006).
  29. T. Joy, S. Pyo, S. Park, C. Choi, C. Palsule, H. Han, C. Feng, S. Lee, J. McKee, P. Altice, C. Hong, C. Boemler, J. Hynecek, M. Louie, J. Lee, D. Kim, H. Haddad, and B. Pain, "Development of a Production-Ready, Back-Illuminated CMOS Image Sensor with Small Pixels," Intl. Electron. Devices Meeting 1007-1010 (2007).

2007 (2)

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, and J. Pond, "Uniform illumination and rigorous electromagnetic simulations applied to CMOS image sensors," Opt. Express 15, 5494-5503 (2007).
[CrossRef] [PubMed]

2006 (1)

W. G. Lee and J. S. Kim, "Comparison of Optical Properties in Al-and Cu-BEOL of CMOS Image Sensor Devices," Electrochem. Solid-State Lett. 9, G254-7 (2006).
[CrossRef]

2005 (5)

P. B. Catrysse, and B. A. Wandell, "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld," Proc. SPIE 5678, 1-13 (2005).
[CrossRef]

F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

2004 (1)

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

2003 (3)

G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

P. B. Catrysse and B. A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," J. Opt. Soc. Am. A 20, 2293-2306 (2003).
[CrossRef]

2002 (1)

2000 (2)

D. M. Hartmann, O. Kibar, and S. C. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Opt. Lett. 25, 975-977 (2000).
[CrossRef]

P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
[CrossRef]

1998 (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

1982 (1)

A. R. Afshar and A. Thetford, "An experiment to measure frustrated total internal reflection," Eur J. Physiol. 3, 72-74 (1982).

Afshar, A. R.

A. R. Afshar and A. Thetford, "An experiment to measure frustrated total internal reflection," Eur J. Physiol. 3, 72-74 (1982).

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
[CrossRef]

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
[CrossRef]

Bu, J.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Cadien, A.

Catrysse, P. B.

P. B. Catrysse, and B. A. Wandell, "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld," Proc. SPIE 5678, 1-13 (2005).
[CrossRef]

P. B. Catrysse and B. A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," J. Opt. Soc. Am. A 20, 2293-2306 (2003).
[CrossRef]

P. B. Catrysse, B. A. and Wandell, "Optical efficiency of image sensor pixels," J. Opt. Soc. Am. A 19, 1610-1620 (2002).
[CrossRef]

P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
[CrossRef]

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Chen, S. F.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Cheong, W. C

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Chien, H. C.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Crocherie, A.

Djurisic, A. B.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

El Gamal, A.

P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
[CrossRef]

Elazar, J. M.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

Esener, S. C.

Fang, Y. K.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Farrell, J. E.

F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
[CrossRef]

Hartmann, D. M.

He, M.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Hirigoyen, F.

Hsu, T. H.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Hwang, S. B.

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Hwang, S. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Kibar, O.

Kim, H. J.

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Kim, H. K.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Kim, J. S.

W. G. Lee and J. S. Kim, "Comparison of Optical Properties in Al-and Cu-BEOL of CMOS Image Sensor Devices," Electrochem. Solid-State Lett. 9, G254-7 (2006).
[CrossRef]

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Kim, S. Y.

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Koo, C. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Lee, D. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Lee, J. G.

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Lee, K. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Lee, S. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Lee, W. G.

W. G. Lee and J. S. Kim, "Comparison of Optical Properties in Al-and Cu-BEOL of CMOS Image Sensor Devices," Electrochem. Solid-State Lett. 9, G254-7 (2006).
[CrossRef]

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Lin, C. S.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Lin, C. Y.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Lin, J. S.

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Liu, X.

P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
[CrossRef]

Majewski, M. L.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

Moon, C. R.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Niu, H. B.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Paik, K. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Park, D. C.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Park, Y. K.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

Peng, X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Pond, J.

Rakic, A. D.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

Thetford, A.

A. R. Afshar and A. Thetford, "An experiment to measure frustrated total internal reflection," Eur J. Physiol. 3, 72-74 (1982).

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
[CrossRef]

Tseng, C. H.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Vaillant, J.

Wandell, B. A.

F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
[CrossRef]

P. B. Catrysse, and B. A. Wandell, "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld," Proc. SPIE 5678, 1-13 (2005).
[CrossRef]

P. B. Catrysse and B. A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," J. Opt. Soc. Am. A 20, 2293-2306 (2003).
[CrossRef]

Wang, C. S.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

Wang, W. D.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

Wuu, S. G.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Xiao, F.

F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
[CrossRef]

Yang, H.

C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Yao, L. L.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

Yaung, D. N.

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

Yu, W. X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Yuan, X. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Appl. Opt (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt 37, 5271-5283 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO-TiO sol-gel glass," Appl. Phys. Lett. 86,114102 (2005).
[CrossRef]

Electrochem. Solid-State Lett. (1)

W. G. Lee and J. S. Kim, "Comparison of Optical Properties in Al-and Cu-BEOL of CMOS Image Sensor Devices," Electrochem. Solid-State Lett. 9, G254-7 (2006).
[CrossRef]

Eur J. Physiol. (1)

A. R. Afshar and A. Thetford, "An experiment to measure frustrated total internal reflection," Eur J. Physiol. 3, 72-74 (1982).

IEEE Electron. Device Lett. (2)

T. H. Hsu, Y. K. Fang, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, L. L. Yao, W. D. Wang, C. S. Wang, and S. F. Chen, "A high-efficiency CMOS image sensor with air gap in situ MicroLens (AGML) fabricated by 0.18-μm CMOS technology," IEEE Electron. Device Lett. 26, 634-636 (2005).
[CrossRef]

T. H. Hsu, Y. K. Fang, C. Y. Lin, S. F. Chen, C. S. Lin, D. N. Yaung, S. G. Wuu, H. C. Chien, C. H. Tseng, and J. S. Lin, "Light guide for pixel crosstalk improvement in deep submicron CMOS image sensor," IEEE Electron. Device Lett. 25, 22-24 (2004).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

G. Agranov, V. Berezin, and R. H. Tsai, "Crosstalk and microlens study in a color CMOS image sensor," IEEE Trans. Electron. Dev. 50, 4-11 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, "Two-Dimensional Optical Simulation on a Visible Ray Passing through Inter-Metal Dielectric Layers of CMOS Image Sensor Device," J. Korean Phys. Soc. 47, S434-9 (2005).

J. Micromech. Microeng. (1)

C. P. Lin, H. Yang, and C. K. Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

F. Xiao, J. E. Farrell, and B. A. Wandell, "Psychophysical thresholds and digital camera sensitivity: the thousand-photon limit," Proc. SPIE 5678, 75-84 (2005).
[CrossRef]

P. B. Catrysse, X. Liu, and A. El Gamal, "QE reduction due to pixel vignetting in CMOS image sensors," Proc. SPIE 3965, 420-430 (2000).
[CrossRef]

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, and D. H. Lee, "Improvement of crosstalk on 5M CMOS image sensor with 1.7 x1.7 µm pixels," Proc. SPIE 6471, 15 (2007).

P. B. Catrysse, and B. A. Wandell, "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld," Proc. SPIE 5678, 1-13 (2005).
[CrossRef]

Other (12)

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, "CMOS imager technology shrinks and image performance," IEEE Workshop on Microelectronics and Electron. Devices 7-18 (2004).

E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, Orlando, 1985).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, (Artech House, Boston, 2000).

OptiFDTD, Optiwave Systems, Inc.

E. Hecht, Optics, (Pearson, San Francisco, 2002).

D. N. Yaung, S. G. Wuu, H. C. Chien, T. H. Hsu, C. H. Tseng, J. S. Lin, J. J. Chen, C. H. Lo, C. Y. Yu, C. S. Tsai and C. S. Wang, "Air-gap guard ring for pixel sensitivity and crosstalk improvement in deep sub-micron CMOS image sensor," IEEE Intl. Electron. Devices Meeting 16.5 (2003).

K. B. Cho, C. Lee, S. Eikedal, A. Baum, J. Jiang, C. Xu, X. Fan, and R. Kauffman, "A 1/2.5 inch 8.1 Mpixel CMOS Image Sensor for Digital Cameras," IEEE Intl. Solid-State Circuits Conf. 508-618 (2007).

S. H. Lee, C. R. Moon, K. H. Paik, S. H. Hwang, J. C. Shin, J. Jung, K. Lee, H. Noh, D. Lee, and K. Kim, "The Features and Characteristics of 5-mega CMOS Image Sensor with Topologically Unique 1.7 μm x 1.7 μm Pixels," Symp. on VLSI Tech. 142-143 (2006).

K. Shinmou, K. Nakama, and T. Koyama, "Fabrication of Micro-Optic Elements by the Sol-Gel Method," J. Sol-Gel Sci. and Tech. 19, 267-269 (2000).
[CrossRef]

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, New York, 1988).

S. Iwabuchi, Y. Maruyama, Y. Ohgishi, M. Muramatsu, N. Karasawa, and T. Hirayama, "A Back-Illuminated High-Sensitivity Small-Pixel Color CMOS Image Sensor with Flexible Layout of Metal Wiring," IEEE Intl. Solid-State Circuits Conf. 1171-1178 (2006).

T. Joy, S. Pyo, S. Park, C. Choi, C. Palsule, H. Han, C. Feng, S. Lee, J. McKee, P. Altice, C. Hong, C. Boemler, J. Hynecek, M. Louie, J. Lee, D. Kim, H. Haddad, and B. Pain, "Development of a Production-Ready, Back-Illuminated CMOS Image Sensor with Small Pixels," Intl. Electron. Devices Meeting 1007-1010 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a). Three-dimensional (3D) structure of a typical four-pixel unit cell of a CMOS image sensor with a red-green-green-blue Bayer color filter array. (b) Single pixel side view, including the microlens, color filter, passivation layer, dielectric layers, metal interconnects, and silicon substrate.

Fig. 2.
Fig. 2.

(a). Two-dimensional (2D) pixel model with layer materials and thicknesses. (b). Electromagnetic field simulation result showing energy flow toward the photodiode (z-component of the Poynting vector, Sz) with significant diffraction effects, reducing optical efficiency (transmission) and leading to spatial crosstalk even at normal incidence.

Fig. 3.
Fig. 3.

Two-pixel cross-sections of the (a) low-index cladding, (b) high-index core, and (c) metal cladding light guiding methods. The solid line represents the transmitted ray, while the dashed line represents the light path without the guide.

Fig. 4.
Fig. 4.

Poynting vector plots depicting energy flow toward the photodiode for the (a) 0.05 µm thick and (b) 0.2 µm thick low-index cladding designs for light with a 30° incidence angle and a wavelength of 651 nm. Only the center three pixels are shown and the boundaries between different materials are outlined. The scale has been modified nonlinearly to bring out detail in the regions of lower energy flow.

Fig. 5.
Fig. 5.

Plots of (a) optical efficiency and (b) crosstalk for the four low-index cladding designs and the reference pixel as a function of incidence angle. Legend indicates results for different air gap thicknesses and reference pixel in both plots.

Fig. 6.
Fig. 6.

Poynting vector plots depicting energy flow toward the photodiode for the (a) n = 1.5 and (b) n = 1.7 high-index core designs for light with 30° incidence angle and wavelength of 651 nm. Only the center three pixels are shown and the boundaries between materials are outlined. The scale has been modified nonlinearly to bring out detail in the regions of lower energy flow.

Fig. 7.
Fig. 7.

Plots of (a) optical efficiency and (b) crosstalk for the four high-index core designs and the reference pixel as a function of incidence angle. Legend indicates results for different core indices and reference pixel in both plots.

Fig. 8.
Fig. 8.

Poynting vector plots depicting energy flow toward the photodiode for the aluminum light guide design for (a) TE and (b) TM polarizations for light with a 30° incidence angle and a wavelength of 651 nm. Only the center three pixels are shown and the boundaries between materials are outlined. The scale has been modified nonlinearly to bring out detail in the regions of lower energy flow.

Fig. 9.
Fig. 9.

Plots of (a) optical efficiency and (b) crosstalk for the metal (TE and TM polarizations) and the reference pixel as a function of incidence angle. Legend indicates results for different polarizations and reference pixel in both plots.

Fig. 10.
Fig. 10.

Bar graphs showing relative percentage change in (a) optical efficiency and (b) crosstalk from the reference for all simulated light guide designs at normal (blue bars) and 30° (red bars) incidence.

Fig. 11.
Fig. 11.

Bar graphs showing relative percentage change in (a) optical efficiency and (b) crosstalk from the reference for the best of each light guide design and the thinned stacks at normal (blue bars) and 30° (red bars) incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ c = cos 1 ( n cladding n core )

Metrics