Abstract

Detailed investigations are undertaken, for the first time, of the transmission performance of recently proposed novel Adaptively Modulated Optical OFDM (AMOOFDM) modems using Subcarrier Modulation (AMOOFDM-SCM) in single-channel, SMF-based IMDD links without optical amplification and chromatic dispersion compensation. The cross-talk effect induced by beatings among subcarriers of various types is a crucial factor limiting the maximum achievable AMOOFDM-SCM performance. By applying single sideband modulation and/or spectral gapping to AMOOFDM-SCM, three AMOOFDM-SCM designs of varying complexity are proposed, which achieve >60Gb/s signal transmission over 20km, 40km and 60km. Such performances are >1.5 times higher than those supported by conventional AMOOFDM modems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Berthold, A. A. M. Saleh, L. Blair and J. M. Simmons, "Optical Networking: past, present, and future," J. Lightwave Technol. 26, 1104-1118 (2008).
    [CrossRef]
  2. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy and T. Li, "High-capacity optical transmission systems," J. Lightwave Technol. 26, 1032-1045 (2008).
    [CrossRef]
  3. H. Bulow, F. Buchali and A. Klekamp, "Electronic dispersion compensation," J. Lightwave Technol. 26, 158-167 (2008).
    [CrossRef]
  4. W. Shieh, H. Bao and Y. Yang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
    [CrossRef] [PubMed]
  5. X. Q. Jin, J. M. Tang, P. S. Spencer and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
    [CrossRef]
  6. E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
    [CrossRef] [PubMed]
  7. J. M. Tang and K. A. Shore, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006).
    [CrossRef]
  8. T. N. Duong, N. Genay, B. Charbonnier, P. Urvoas, P. Chanclou and A. Pizzinat, "Experimental demonstration of 10Gbit/s transmission over 110km SMF by direct modulation of 2 GHz bandwidth DFB laser using discrete multi-tone modulation for passive optical network," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper NMB3.
  9. R. Hui, B. Zhu, R. X. Huang, C. T. Allen, K. R. Demarest and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," J. Lightwave Technol. 20, 417-427 (2002).
    [CrossRef]
  10. X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
    [CrossRef]
  11. A. B. Carlson, P. B. Crilly and J. C. Rutledge, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 4th Edition (McGraw-Hill Higher Education, 2002).
  12. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
    [CrossRef]
  13. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezogou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, "Quantum dot semiconductor optical amplifier with a -3dB bandwidth of up to 120 nm in semi-cooled operation," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper OTuC1.
  14. T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fibre Optics, (Academic, 1995).
  16. G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).
  17. J. M. Tang, P. M. Lane, and K. A. Shore, "High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006).
    [CrossRef]
  18. B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightwave Technol. 26, 196-203 (2008).
    [CrossRef]

2008 (10)

J. Berthold, A. A. M. Saleh, L. Blair and J. M. Simmons, "Optical Networking: past, present, and future," J. Lightwave Technol. 26, 1104-1118 (2008).
[CrossRef]

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy and T. Li, "High-capacity optical transmission systems," J. Lightwave Technol. 26, 1032-1045 (2008).
[CrossRef]

H. Bulow, F. Buchali and A. Klekamp, "Electronic dispersion compensation," J. Lightwave Technol. 26, 158-167 (2008).
[CrossRef]

W. Shieh, H. Bao and Y. Yang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
[CrossRef] [PubMed]

X. Q. Jin, J. M. Tang, P. S. Spencer and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightwave Technol. 26, 196-203 (2008).
[CrossRef]

2006 (2)

2002 (1)

Allen, C. T.

Armstrong, J.

Bao, H.

Berthold, J.

Blair, L.

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Buchali, F.

Bulow, H.

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Chraplyvy, A. R.

Demarest, K. R.

Giacoumidis, E.

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

Gnauck, A. H.

Huang, R. X.

Hui, R.

Jin, X. Q.

X. Q. Jin, J. M. Tang, P. S. Spencer and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

Klekamp, A.

Kobayashi, T.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Lane, P. M.

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Li, T.

Lowery, A. J.

Miyamoto, Y.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Richards, D.

Saleh, A. A. M.

Sano, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Schmidt, B. J. C.

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Shieh, W.

Shore, K. A.

Simmons, J. M.

Spencer, P. S.

X. Q. Jin, J. M. Tang, P. S. Spencer and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
[CrossRef]

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Takada, A.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Takara, H.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Tang, J. M.

X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
[CrossRef]

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

X. Q. Jin, J. M. Tang, P. S. Spencer and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

J. M. Tang and K. A. Shore, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, "High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006).
[CrossRef]

Tkach, R. W.

Wei, J. L.

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

Yamada, E.

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

Yang, Y.

Zheng, X.

X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
[CrossRef]

Zhu, B.

Electron Lett. (1)

T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, H. Takara, and A. Takada, "Electro-optically multiplexed 110 Gbit/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron Lett. 44, 225-226 (2008).
[CrossRef]

IEEE Comm. Lett (1)

X. Zheng, J. M. Tang and P. S. Spencer, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over worst-case multimode fibre links," IEEE Comm. Lett,  12, 788-790 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Netw. (1)

Opt. Express (1)

Opt. Express. (1)

E. Giacoumidis, J. L. Wei, X. Q. Jin and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express. 16, 9480-9494 (2008).
[CrossRef] [PubMed]

Other (5)

T. N. Duong, N. Genay, B. Charbonnier, P. Urvoas, P. Chanclou and A. Pizzinat, "Experimental demonstration of 10Gbit/s transmission over 110km SMF by direct modulation of 2 GHz bandwidth DFB laser using discrete multi-tone modulation for passive optical network," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper NMB3.

G. P. Agrawal, Nonlinear Fibre Optics, (Academic, 1995).

G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezogou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, "Quantum dot semiconductor optical amplifier with a -3dB bandwidth of up to 120 nm in semi-cooled operation," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper OTuC1.

A. B. Carlson, P. B. Crilly and J. C. Rutledge, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 4th Edition (McGraw-Hill Higher Education, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic illustrations of the modem designs for AMOOFDM-SCM scheme I, II and III, together with the transmission link structure considered. A representative link frequency response and an AMOOFDM-SCM scheme III signal spectrum are also shown in Fig. 1(c). LPF: low-pass filter; USB: upper sideband spectrum of the SCM subcarrier.

Fig. 2.
Fig. 2.

Signal transmission capacity and RF carrier frequency as a function of transmission distance for AMOOFDM-SCM scheme I.

Fig. 3.
Fig. 3.

Signal line rate of passband SCM subcarrier of AMOOFDM-SCM scheme I as a function of transmission distance for the cases of including and excluding the baseband SCM subcarrier.

Fig. 4.
Fig. 4.

Frequency down-converted spectrum of the DSB passband SCM subcarrier after passing through 60 km SMF. The RF carrier frequency is 19GHz.

Fig. 5.
Fig. 5.

Frequency down-converted spectrum of the SSB passband SCM subcarrier after passing through 60km SMF. The RF carrier frequency is 19GHz.

Fig. 6.
Fig. 6.

Received signal spectrum of AMOOFDM-SCM scheme II after transmitting 40 km. The two SCM subcarriers operate at RF carrier frequencies of 18.75GHz and 43.75GHz.

Fig. 7.
Fig. 7.

Transmission capacity versus reach performance of AMOOFDM-SCM scheme II. The two SCM subcarriers are taken to be 18.75GHz and 43.75GHz.

Fig. 8.
Fig. 8.

Contour plot of signal transmission capacity as a function of RF carrier frequencies of the first and second SCM subcarriers for AMOOFDM-SCM scheme III. Numerical simulations are undertaken for a 40 km transmission link.

Fig. 9.
Fig. 9.

Received spectrum of AMOOFDM-SCM scheme III after a 40km transmission distance.

Fig. 10.
Fig. 10.

Signal transmission capacity versus reach performance of AMOOFDM-SCM scheme III. For comparison, the transmission performances for AMOOFDM-SCM scheme I, AMOOFDM-SCM scheme II and conventional AMOOFDM are also illustrated.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S SSBm ( t ) = A DSBm ( t ) cos ( ω RFm t ) H { A DSBm ( t ) } sin ( ω RFm t ) m = 1 , 2
S e ( t ) = S SSB 1 ( t ) + S SSB 2 ( t ) + I dc
S o ( t ) = S e ( t )
Δ f SCM = n Δ f AMOOFDM
R s = m = 1 2 k = 1 31 M mk ( N sub + N cp ) T s

Metrics