Abstract

We report electro-optic (EO) long-period waveguide gratings (LPWGs) fabricated in a special lithium-niobate (LiNbO3) waveguide structure. The waveguide consists of a clad core formed with a two-step proton-exchange process and a thin cover layer created by an additional reverse proton-exchange process for the restoration of the EO strength of the waveguide. Using several LPWG samples, we demonstrate experimentally the effects of using different cladding modes and waveguide parameters on the grating performance. One of our 10-mm long samples shows a 27-dB rejection band at a driving voltage of 95 V with a center wavelength tunable thermally at a sensitivity of -0.4 nm/°C. Our analysis of the theoretical limit of the efficiency of such an EO grating suggests room for significant further improvement by optimizing the waveguide and electrode designs. The LiNbO3 LPWG provides an EO control of the grating strength and a thermo-optic control of the operating wavelength and thus opens up many new opportunities for high-speed applications, such as dynamic optical filtering and optical intensity modulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
    [CrossRef] [PubMed]
  2. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
    [CrossRef]
  3. Y. M. Chu, K. S. Chiang, and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760 (2006).
    [CrossRef] [PubMed]
  4. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
    [CrossRef] [PubMed]
  5. M. Kulishov, X. Daxhelet, M. Gaidi, and M. Chaker, "Transmission spectrum reconfiguration in long-period gratings electrically induced in Pockels-type media with the help of a periodical electrode structure," J. Lightwave Technol. 22, 923-933 (2004).
    [CrossRef]
  6. W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
    [CrossRef]
  7. W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Electro-Optic Long-Period Grating on Lithium-Niobate Waveguide," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Washington, DC, 2008), Paper JWA33.
    [PubMed]
  8. L. Arizmendi, "Photonic applications of lithium niobate crystals," Physica Status Solidi A 201, 253-283 (2004).
    [CrossRef]
  9. A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
    [CrossRef]
  10. J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991).
    [CrossRef]
  11. G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
    [CrossRef]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
    [CrossRef]
  13. K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
    [CrossRef]
  14. K. S. Chiang and S. Y. Cheng, K. S. Chiang, and S. Y. Cheng, "A technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides", Opt. Eng. 47, 034601(1-4) (2008).
    [CrossRef]
  15. W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
    [CrossRef]
  16. A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
    [CrossRef]
  17. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002).
    [CrossRef]

2008

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

2006

2004

M. Kulishov, X. Daxhelet, M. Gaidi, and M. Chaker, "Transmission spectrum reconfiguration in long-period gratings electrically induced in Pockels-type media with the help of a periodical electrode structure," J. Lightwave Technol. 22, 923-933 (2004).
[CrossRef]

L. Arizmendi, "Photonic applications of lithium niobate crystals," Physica Status Solidi A 201, 253-283 (2004).
[CrossRef]

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

2002

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002).
[CrossRef]

G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
[CrossRef]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

2001

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

2000

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

1993

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

1991

J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991).
[CrossRef]

1985

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

Alcazarde, A.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Alonso, B.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Arizmendi, L.

L. Arizmendi, "Photonic applications of lithium niobate crystals," Physica Status Solidi A 201, 253-283 (2004).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Bai, Y.

Bermudez, V.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Cabrera, J. M.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
[CrossRef]

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

Chaker, M.

Chan, H. P.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Chiang, K. S.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. M. Chu, K. S. Chiang, and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760 (2006).
[CrossRef] [PubMed]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002).
[CrossRef]

K. S. Chiang, "Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol. LT-3, 385-391 (1985).
[CrossRef]

Chow, C. K.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Chu, Y. M.

Daxhelet, X.

de la Paliza, G.

G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
[CrossRef]

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Gaidi, M.

Garcia-Cabanes, A.

G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
[CrossRef]

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Honkanen, S.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

Jackel, J. L.

J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991).
[CrossRef]

Jin, W.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

Johnson, J. J.

J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Kulishov, M.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Liu, Q.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. M. Chu, K. S. Chiang, and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760 (2006).
[CrossRef] [PubMed]

Lor, K. P.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Mendez, A.

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Najafi, S. I.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

Ng, M. N.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Ramiro, B.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Rams, J.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Rastogi, V.

Rojo, G.

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

Tervonen, A.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

Wang, W. J.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermudez, and J. M. Cabrera, " Temperature effects in proton exchanged LiNbO3 waveguides," Appl. Phys. B 79, 845-849 (2004).
[CrossRef]

A. Mendez, G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Comparison of the electro-optic coefficient r(33) in well-defined phases of proton exchanged LiNbO3 waveguides," Appl. Phys. B 73, 485-488 (2001).
[CrossRef]

Electron. Lett.

J. L. Jackel and J. J. Johnson, "Reverse Exchange Method for Burying Proton Exchanged Wave-Guides," Electron. Lett. 27, 1360-1361 (1991).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Select. Topics Quantum Electron. 6, 69-82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Lithium-Niobate Channel Waveguide for the Realization of Long-Period Gratings," IEEE Photon. Technol. Lett. 20, 1258-1260 (2008).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

J. Appl. Phys.

W. J. Wang, S. Honkanen, S. I. Najafi, and A. Tervonen, "Loss characteristics of potassium and silver double-ion-exchanged glass waveguides," J. Appl. Phys. 74, 1529-1533 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings", Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Opt. Express

Physica Status Solidi A

L. Arizmendi, "Photonic applications of lithium niobate crystals," Physica Status Solidi A 201, 253-283 (2004).
[CrossRef]

G. de la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, "Electro-optic behaviour of reverse proton exchanged LiNbO3 waveguides," Physica Status Solidi A 193, R7-R9 (2002).
[CrossRef]

Other

W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan, and K. P. Lor, "Electro-Optic Long-Period Grating on Lithium-Niobate Waveguide," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Washington, DC, 2008), Paper JWA33.
[PubMed]

K. S. Chiang and S. Y. Cheng, K. S. Chiang, and S. Y. Cheng, "A technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides", Opt. Eng. 47, 034601(1-4) (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Cross section of a clad LiNbO3 waveguide and (b) an EO LPWG formed in the waveguide.

Fig. 2.
Fig. 2.

A photo showing the Al electrode pattern, which covers a number of waveguides formed on the same LiNbO3 substrate, where the red lines label the locations of the waveguides.

Fig. 3.
Fig. 3.

Near-field images of the output light patterns from the fabricated LiNbO3 waveguide, showing (a) a single mode guided in the core and (b) the cladding modes guided in the slab cladding.

Fig. 4.
Fig. 4.

Comparison of the transmission spectra measured at 22 °C (a) for gratings formed in Waveguide A with a 50-µm pitch (red) and a 102-µm pitch (blue) at a driving voltage of 184 V, and (b) for gratings formed in Waveguide B with a 60-µm pitch (red) and a 128-µm pitch (blue) at a driving voltage of 95 V.

Fig. 5.
Fig. 5.

(a) Normalized transmission spectra measured for the 128-µm pitch grating fabricated in Waveguide B showing the evolution of the rejection band with the driving voltage at three temperatures. (b) Variation of the contrast of the grating with the driving voltage measured at three temperatures.

Fig. 6.
Fig. 6.

Comparison of the temperature sensitivities of the two grating samples, showing -1.1 nm/°C for the 102-µm pitch grating fabricated in Waveguide A and -0.4 nm/°C for 128-µm pitch grating fabricated in Waveguide B.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ = π λ Δ n · η
Δ n = n 3 2 r 33 V d
V π 2 = λ d n 3 r 33 L .
V π 2 5 × 10 3 ( d L ) .

Metrics