Abstract

A novel fabrication process has been developed for fabricating undercut-etched electroabsorption modulators that are compatible with tunable lasers. This process allows for the incorporation of highly doped p-type InGaAs above the upper cladding as an ohmic contact layer. The EAM demonstrates significant improvement in the microwave performance with little effect on modulation efficiency due to the undercut etching. This device uses a traveling wave electrode design with an integrated, matched termination resistor to demonstrate a 34 GHz 3-dB bandwidth for a 600 µm long modulator.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
    [Crossref]
  2. T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.
  3. J. Raring, L. Johansson, E. Skogen, M. Sysak, H. Poulsen, S. DenBaars, and L. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25, 239–248 (2007).
    [Crossref]
  4. H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol. 24, 2219–2224 (2006).
    [Crossref]
  5. T.-H. Wu, W.-C. Cheng, and D. Lee, “High-speed undercut-wet-etching-active-region traveling-wave electroabsorption modulator,” in in Proceedings IEEE LEOS 18, 2005, pp. 426–427.
  6. Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
    [Crossref]
  7. M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
    [Crossref]
  8. D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol. 24, 1470–1477 (2006).
    [Crossref]
  9. R. Lewen, S. Irmscher, U. Westergren, L. Thylen, and U. Eriksson, “Segmented transmission-line electroabsorption modulators,” J. Lightwave Technol. 22, 172–179 (2004).
    [Crossref]
  10. R. Spickermann and N. Dagli, “Experimental analysis of millimeter wave coplanar waveguide slow wave structures on GaAs,” IEEE Trans. Microwave Theory Tech. 42, 1918–1924 (1994).
    [Crossref]
  11. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, Ed. (JohnWiley and Sons, Inc.1995).
  12. F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
    [Crossref]

2007 (2)

J. Raring, L. Johansson, E. Skogen, M. Sysak, H. Poulsen, S. DenBaars, and L. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25, 239–248 (2007).
[Crossref]

F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
[Crossref]

2006 (3)

2005 (1)

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

2004 (2)

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

R. Lewen, S. Irmscher, U. Westergren, L. Thylen, and U. Eriksson, “Segmented transmission-line electroabsorption modulators,” J. Lightwave Technol. 22, 172–179 (2004).
[Crossref]

2001 (1)

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

1994 (1)

R. Spickermann and N. Dagli, “Experimental analysis of millimeter wave coplanar waveguide slow wave structures on GaAs,” IEEE Trans. Microwave Theory Tech. 42, 1918–1924 (1994).
[Crossref]

Barton, J.

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Bjorlin, E.

Blumenthal, D.

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Bowers, J.

D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol. 24, 1470–1477 (2006).
[Crossref]

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

Cheng, W.-C.

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

T.-H. Wu, W.-C. Cheng, and D. Lee, “High-speed undercut-wet-etching-active-region traveling-wave electroabsorption modulator,” in in Proceedings IEEE LEOS 18, 2005, pp. 426–427.

Chiu, Y.-J.

F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
[Crossref]

D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol. 24, 1470–1477 (2006).
[Crossref]

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

Coldren, L.

J. Raring, L. Johansson, E. Skogen, M. Sysak, H. Poulsen, S. DenBaars, and L. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25, 239–248 (2007).
[Crossref]

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, Ed. (JohnWiley and Sons, Inc.1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, Ed. (JohnWiley and Sons, Inc.1995).

Dagli, N.

R. Spickermann and N. Dagli, “Experimental analysis of millimeter wave coplanar waveguide slow wave structures on GaAs,” IEEE Trans. Microwave Theory Tech. 42, 1918–1924 (1994).
[Crossref]

DenBaars, S.

Dummer, M.

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Eriksson, U.

Fukano, H.

Hanke, C.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Irmscher, S.

Johansson, L.

Kawanishi, H.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Knodl, T.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Kondo, Y.

Lasaosa, D.

Lee, D.

T.-H. Wu, W.-C. Cheng, and D. Lee, “High-speed undercut-wet-etching-active-region traveling-wave electroabsorption modulator,” in in Proceedings IEEE LEOS 18, 2005, pp. 426–427.

Lewen, R.

Lin, F.

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

Lin, F.-Z.

F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
[Crossref]

Macaluso, R.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Mineo, N.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Mural, H.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Pasquariello, D.

Peschke, M.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Piprek, J.

Poulsen, H.

Raring, J.

J. Raring, L. Johansson, E. Skogen, M. Sysak, H. Poulsen, S. DenBaars, and L. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25, 239–248 (2007).
[Crossref]

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Saravanan, B.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Shibuya, Y.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Skogen, E.

Spickermann, R.

R. Spickermann and N. Dagli, “Experimental analysis of millimeter wave coplanar waveguide slow wave structures on GaAs,” IEEE Trans. Microwave Theory Tech. 42, 1918–1924 (1994).
[Crossref]

Stegmuller, B.

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

Sysak, M.

J. Raring, L. Johansson, E. Skogen, M. Sysak, H. Poulsen, S. DenBaars, and L. Coldren, “40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters,” J. Lightwave Technol. 25, 239–248 (2007).
[Crossref]

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

Tamura, M.

Thylen, L.

Wada, H.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Westergren, U.

Wu, T.-H.

F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
[Crossref]

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

T.-H. Wu, W.-C. Cheng, and D. Lee, “High-speed undercut-wet-etching-active-region traveling-wave electroabsorption modulator,” in in Proceedings IEEE LEOS 18, 2005, pp. 426–427.

Yamada, K.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Yamanaka, T.

Yamauchi, Y.

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (4)

H. Kawanishi, H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-ghz bandwidth,” IEEE Photon. Technol. Lett. 13, 954–956 (2001).
[Crossref]

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. Lin, and J. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett. 17, 2065–2067 (2005).
[Crossref]

M. Sysak, J. Raring, J. Barton, M. Dummer, D. Blumenthal, and L. Coldren, “A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs,” IEEE Photon. Technol. Lett. 18, 1630–1632 (2006).
[Crossref]

F.-Z. Lin, Y.-J. Chiu, and T.-H. Wu, “Cladding layer impedance reduction to improve microwave propagation properties in p-i-n waveguides,” IEEE Photon. Technol. Lett. 19, pp. 276–278 (2007).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. Spickermann and N. Dagli, “Experimental analysis of millimeter wave coplanar waveguide slow wave structures on GaAs,” IEEE Trans. Microwave Theory Tech. 42, 1918–1924 (1994).
[Crossref]

in in Proceedings IEEE LEOS 17 (1)

T. Knodl, C. Hanke, B. Saravanan, M. Peschke, R. Macaluso, and B. Stegmuller, “40 GHz monolithic integrated 1.3 µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” in in Proceedings IEEE LEOS 17,  vol. 2, 2004, pp. 675–676 Vol.2.

J. Lightwave Technol. (4)

Other (2)

T.-H. Wu, W.-C. Cheng, and D. Lee, “High-speed undercut-wet-etching-active-region traveling-wave electroabsorption modulator,” in in Proceedings IEEE LEOS 18, 2005, pp. 426–427.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, K. Chang, Ed. (JohnWiley and Sons, Inc.1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Epitaxial layer structure of undercut TW-EAM. (b) Cross section of ridge structure after 15 min. selective wet etch. The narrow InGaAs layer was broken during cleaving.

Fig. 2.
Fig. 2.

Fabrication process for undercut EAM. (a) Surface ridge after 400 nm SiN deposition. (b) SiN nitride sidewall mask formation by vertical RIE. (c) Final cross-section after deeply etching ridge and 15 minute selective wet etching.

Fig. 3.
Fig. 3.

Modal confinement in MQW active region vs quaternary waveguide width for 3 µm wide cladding. Insets (a)–(d) depict mode profile for 1.0, 1.5, 2.0, and 2.5 µm wide.

Fig. 4.
Fig. 4.

(a) Fabricated TW-EAM with integrated resistor and capacitor termination. (b) Schematic cross-section of device and metallization layers.

Fig. 5.
Fig. 5.

Comparison of 2-port electrical S-parameters for TW-EAM with (solid) and without (dotted) undercut etching. DC bias is -2.5 V.

Fig. 6.
Fig. 6.

(a) Characteristic impedance, and (b), microwave index and attenuation extracted from S-parameters. Solid lines and dotted lines denote devices with and without undercut etching, respectively.

Fig. 7.
Fig. 7.

(a) DC extinction characteristics of EAM with and without undercut for λ=1550nm. (b) Traveling-wave frequency response for the 600 µm long undercut EAM. The inset shows the 40 Gb/s (PRBS 231-1) eye for the forward traveling 26 Ω case.

Metrics