Abstract

We report first observation of net-gain from an optical parametric amplifier in a planar waveguide. This was achieved in a low-loss As2S3 planar waveguide, with a strong nonlinearity (γ ~10/W/m) and tailored anomalous dispersion yielding efficient Raman-assisted four-wave mixing at telecom wavelengths. The experiments were in good agreement with theory, and indicate a peak net-gain greater than +16 dB for the signal and idler (+30 dB neglecting coupling losses) and a broad bandwidth spanning 180 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996).
    [CrossRef] [PubMed]
  2. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
    [CrossRef]
  3. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
    [CrossRef]
  4. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," in European Conference on Optical Communication (Glasgow, Scotland, 2005), paper Th4.4.4.
    [CrossRef]
  5. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, "Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996).
    [CrossRef] [PubMed]
  6. E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
    [CrossRef]
  7. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
    [CrossRef]
  8. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
    [CrossRef]
  9. S. Watanabe, and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," J. Lightwave Technol. 14, 243-248 (1996).
    [CrossRef]
  10. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  11. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
    [CrossRef] [PubMed]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  13. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
    [CrossRef]
  14. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
    [CrossRef] [PubMed]
  15. Q. Lin, J. D. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
    [CrossRef] [PubMed]
  16. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, "Group velocity inversion in AlGaAs nanowires," Opt. Express 15, 12755-12762 (2007).
    [CrossRef] [PubMed]
  17. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
    [CrossRef] [PubMed]
  18. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007).
    [CrossRef] [PubMed]
  19. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, "Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide," Opt. Express 16, 14938-14944 (2008).
    [CrossRef] [PubMed]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).
  21. J. S. Browder, S. S. Ballard, and P. Klocek, "Physical properties of glass infrared optical materials," in Handbook of infrared optical materials, P. Klocek, ed. (Marcel Dekker, Inc., New York, New York, 1991).
  22. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
    [CrossRef] [PubMed]
  23. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Plasma etching of As2S3 films for optical waveguides," J. Non-Cryst. Solids 354, 3179-3183 (2008).
    [CrossRef]
  24. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  25. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combining parametric and raman gain," J. Lightwave Technol. 19, 977-981 (2001).
    [CrossRef]
  26. T. Torounidis, and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
    [CrossRef]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  28. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
    [CrossRef] [PubMed]
  29. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007).
    [CrossRef] [PubMed]

2008 (3)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Plasma etching of As2S3 films for optical waveguides," J. Non-Cryst. Solids 354, 3179-3183 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, "Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide," Opt. Express 16, 14938-14944 (2008).
[CrossRef] [PubMed]

2007 (7)

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
[CrossRef] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, "Group velocity inversion in AlGaAs nanowires," Opt. Express 15, 12755-12762 (2007).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
[CrossRef] [PubMed]

I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007).
[CrossRef] [PubMed]

T. Torounidis, and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

2006 (3)

2005 (1)

2003 (2)

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

2002 (3)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

2001 (1)

2000 (1)

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

1996 (3)

1995 (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

1979 (1)

Agrawal, G. P.

Aitchison, J. S.

Akasaka, Y.

Andrekson, P.

T. Torounidis, and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Brar, K.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

Bulla, D.

Bulla, D. A.

Centanni, J. C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

Centanni, J. C. C. A.-J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Chen, X. G.

Chiang, T. K.

Choi, D. Y.

Choi, D.-Y.

Chou, C. Y.

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

Chraplyvy, A. R. C. A.-A. R.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Ciaramella, E.

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

Coen, S.

Dadap, J. I.

de Sterke, C. M.

Eggleton, B. J.

Fauchet, P. M.

Fekete, D.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Fukuda, H.

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Green, W. M.

Harvey, J. D.

Headley, C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

Ho, M. C.

Holzlohner, R.

Hsieh, A. S. Y.

Hsieh, I. W.

Itabashi, S.-i.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Jorgensen, C. G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

Jugessur, A.

Kagi, N.

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Kazovsky, L. G.

Lamont, M. R. E.

Leonhardt, R.

Lin, Q.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Liu, X. P.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Manolatou, C.

Marhic, M.

Marhic, M. E.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

Meier, J.

Menyuk, C. R.

Mohammed, W. S.

Mojahedi, M.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Murdoch, S. G.

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Park, Y.

Pelusi, M. D.

Pepper, D. M.

Qian, L.

Radic, S.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

Raybon, G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

Rode, A.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Plasma etching of As2S3 films for optical waveguides," J. Non-Cryst. Solids 354, 3179-3183 (2008).
[CrossRef]

Rode, A. V.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Shirasaki, M.

S. Watanabe, and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

Shoji, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Sinkin, O. V.

Ta'eed, V. G.

Takahashi, J.-i.

Takahashi, M.

Torounidis, T.

T. Torounidis, and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Trillo, S.

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

Tsuchizawa, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Uesaka, K.

Vanholsbeeck, F.

Vlasov, Y. A.

Wang, R. P.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Plasma etching of As2S3 films for optical waveguides," J. Non-Cryst. Solids 354, 3179-3183 (2008).
[CrossRef]

Watanabe, S.

S. Watanabe, and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," J. Lightwave Technol. 14, 243-248 (1996).
[CrossRef]

Watanabe, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Wong, G. K. L.

Xia, F. N.

Yamada, K.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Yang, F. S.

Yariv, A.

Zhang, J. D.

Zweck, J.

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, "Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing," IEEE Photon. Technol. Lett. 14, 1406-1408 (2002).
[CrossRef]

E. Ciaramella, and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 12, 849-851 (2000).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. C. A.-J. C. Centanni, and A. R. C. A.-A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

T. Torounidis, and P. Andrekson, "Broadband single-pumped fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett. 19, 650-652 (2007).
[CrossRef]

J. Appl. Phys. (1)

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, "Third-Order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass-Fibers," J. Appl. Phys. 77, 5518-5523 (1995).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Plasma etching of As2S3 films for optical waveguides," J. Non-Cryst. Solids 354, 3179-3183 (2008).
[CrossRef]

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008).
[CrossRef]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
[CrossRef] [PubMed]

Opt. Express (10)

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
[CrossRef] [PubMed]

Q. Lin, J. D. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
[CrossRef] [PubMed]

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
[CrossRef] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, "Group velocity inversion in AlGaAs nanowires," Opt. Express 15, 12755-12762 (2007).
[CrossRef] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007).
[CrossRef] [PubMed]

V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007).
[CrossRef] [PubMed]

I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, "Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide," Opt. Express 16, 14938-14944 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).

J. S. Browder, S. S. Ballard, and P. Klocek, "Physical properties of glass infrared optical materials," in Handbook of infrared optical materials, P. Klocek, ed. (Marcel Dekker, Inc., New York, New York, 1991).

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," in European Conference on Optical Communication (Glasgow, Scotland, 2005), paper Th4.4.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Concept of single-pump (degenerate) four-wave mixing. A high-power pump and weak signal co-propagate within a nonlinear medium. If the phase-matching conditions are met, energy from the pump is transferred to the signal, providing amplification and creating an idler due to energy conservation. Note that the above shows a serpentine waveguide, whereas a straight waveguide is utilized in this paper.

Fig. 2.
Fig. 2.

(a) Schematic of the As2S3 rib waveguide. (b) The fundamental quasi-TM mode field. (c) Total and material dispersion curves for the waveguide shown in (a).

Fig. 3.
Fig. 3.

Experimental setup used for measuring FWM spectra.

Fig. 4.
Fig. 4.

Experimental spectrum (blue, solid line) after propagation through the As2S3 waveguide with the pump at 1532 nm and the CW signal at 1610 nm, compared to simulation (red, dashed line), with the simulated input spectrum (green, dotted line). The combined FWM and Raman gain estimated from simulation is +32.5 dB for the signal (from coupled input to output signal peak power) and +30.6 dB for the idler (from coupled input to output idler peak power). The inset shows the Raman gain spectrum, based on experimental measurement, used in the simulation.

Fig. 5.
Fig. 5.

(a) Experimental spectra after propagation through the As2S3 waveguide showing the FWM gain bandwidth with a pulsed pump at a wavelength of 1530 nm and a CW signal at wavelengths varying between 1550 nm and 1630 nm. (b) SSFM simulated spectra modeling the experiment using the dispersion shown in Fig. 2(c). Simulations suggest more than 30 dB of FWM gain (peak power in the idler compared to the signal input power) and a bandwidth of over 180 nm.

Fig. 6.
Fig. 6.

(a) Signal and idler gain, excluding coupling losses, versus wavelength simulated using same parameters as those used in Fig. 5(b). The horizontal dashed line denotes the level of gain necessary to compensate for coupling losses. (b) Peak signal and idler gain as a function of the pump input peak power, simulated using the same parameters.

Fig. 7.
Fig. 7.

Simulation of signal and idler gain with decreasing fractional contribution of delayed Raman response.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z A ( z , t ) = α 2 A i β 2 2 ! 2 A t 2 + β 3 3 ! 3 A t 3 + i β 4 4 ! 4 A t 4
+ i ( γ + i α 2 A eff ) ( 1 + i ω 0 t ) ( A ( z , t ) R ( t ) A ( z , t t ) 2 dt ) ,

Metrics