Abstract

The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3rd order misalignment aberrations. Here it is shown that two dominant 3rd order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3rd order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3rd order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. McLeod, "Collimation of Fast Wide-Field Telescopes," Publ. Astron. Soc. Pac. 108, 217-219 (1996).
    [CrossRef]
  2. S. Kim, H-S. Yang, Y-W. Lee, and S-W. Kim, "Merit function regression method for efficient alignment control of two-mirror optical systems," Opt. Express 15, 5059-5068 (2007).
    [CrossRef] [PubMed]
  3. T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).
  4. J. Howard, "Wavefront aberrations due to alignment and figure compensation of the NASA James Webb Space Telescope," Proc. SPIE 6675, 6675-01 (2007).
  5. C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).
  6. K. P. Thompson, "Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry," J. Opt. Soc. Am. A 22, 1389-1401 (2005).
    [CrossRef]
  7. K. P. Thompson, T. Schmid, O. Cakmakci, and J. P. Rolland, "A real-ray based method for locating individual aberration field centers in imaging systems without symmetry," submitted to JOSA A, 2008.

2008 (2)

T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

2007 (2)

J. Howard, "Wavefront aberrations due to alignment and figure compensation of the NASA James Webb Space Telescope," Proc. SPIE 6675, 6675-01 (2007).

S. Kim, H-S. Yang, Y-W. Lee, and S-W. Kim, "Merit function regression method for efficient alignment control of two-mirror optical systems," Opt. Express 15, 5059-5068 (2007).
[CrossRef] [PubMed]

2005 (1)

1996 (1)

B. A. McLeod, "Collimation of Fast Wide-Field Telescopes," Publ. Astron. Soc. Pac. 108, 217-219 (1996).
[CrossRef]

Arenberg, J.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Atkinson, C.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Howard, J.

J. Howard, "Wavefront aberrations due to alignment and figure compensation of the NASA James Webb Space Telescope," Proc. SPIE 6675, 6675-01 (2007).

Kim, S.

Kim, S-W.

Lee, Y-W.

Matthews, G.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

McLeod, B. A.

B. A. McLeod, "Collimation of Fast Wide-Field Telescopes," Publ. Astron. Soc. Pac. 108, 217-219 (1996).
[CrossRef]

Oschmann, J.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Rolland, J. P.

T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).

Schmid, T.

T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).

Thompson, K. P.

T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).

K. P. Thompson, "Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry," J. Opt. Soc. Am. A 22, 1389-1401 (2005).
[CrossRef]

Waldman, M.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Wertheimer, A.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Whitman, T.

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Yang, H-S.

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Proc. SPIE (3)

T. Schmid, K. P. Thompson, and J. P. Rolland, "Alignment of two-mirror astronomical telescopes; the astigmatic component," Proc. SPIE 7017, 7017-11 (2008).

J. Howard, "Wavefront aberrations due to alignment and figure compensation of the NASA James Webb Space Telescope," Proc. SPIE 6675, 6675-01 (2007).

C. Atkinson, J. Arenberg, G. Matthews, M. Waldman, A. Wertheimer, T. Whitman, and J. Oschmann, "Architecting a revised optical test approach for JWST," Proc. SPIE 7010, 7010-26 (2008).

Publ. Astron. Soc. Pac. (1)

B. A. McLeod, "Collimation of Fast Wide-Field Telescopes," Publ. Astron. Soc. Pac. 108, 217-219 (1996).
[CrossRef]

Other (1)

K. P. Thompson, T. Schmid, O. Cakmakci, and J. P. Rolland, "A real-ray based method for locating individual aberration field centers in imaging systems without symmetry," submitted to JOSA A, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The dominant residual aberrations of, (a) Cassegrain, 3rd order field linear coma (b) Ritchey-Chretien, 3rd order astigmatism that is quadratic with field.

Fig. 2.
Fig. 2.

The 3rd order coma of: (a) an aligned Cassegrain, 3rd order field linear coma (b) a misaligned Cassegrain, offset 3rd order field linear coma.

Fig. 3.
Fig. 3.

The 3rd order coma of: (a) an aligned Ritchey-Chretien, no 3rd order coma (b) a misaligned Ritchey-Chretien, 3rd order coma that is constant in magnitude and orientation over the field of view.

Fig. 4.
Fig. 4.

The dominant residual aberrations of a misaligned TMA telescope, (a) 3rd order coma that is constant over field, (b) 3rd order astigmatism that is field-asymmetric and field-linear.

Fig. 5.
Fig. 5.

The dominant misalignment aberration of TMA telescopes with corrected on-axis performance is field-asymmetric, field-linear 3rd order astigmatism, as illustrated in b).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Focus Tilt 3 rd Spherical
W = Δ W 20 ( ρ · ρ ) + Δ W 11 ( H · ρ ) + j W 040 j ( ρ · ρ ) 2
3 rd Coma
+ j W 131 j [ ( H σ j ) · ρ ] ( ρ · ρ )
3 rd Astigmatism 3 rd Field Curvature
+ j W 222 j [ ( H σ j ) · ρ ] 2 + j W 220 j [ ( H σ j ) · ( H σ j ) ] ( ρ · ρ )
3 rd Distortion
+ j W 311 j [ ( H σ j ) · ( H σ j ) ] [ ( H σ j ) · ρ ] ,
W = j W 131 j [ ( H σ j ) · ρ ] ( ρ · ρ )
= [ ( ( j W 131 j H ) ( j W 131 j σ j ) ) · ρ ] ( ρ · ρ ) .
j W 131 j H = W 131 H = 0 .
A 131 j W 131 j σ j ,
W = ( A 131 · ρ ) ( ρ · ρ ) .
W = 1 2 [ j W 222 j H 2 2 H ( j W 222 j σ j ) + j W 222 j σ j 2 ] · σ 2 .
j W 222 j H 2 = W 222 H 2 = 0 , ( any TMA telescope )
W = 1 2 [ 2 H ( j W 222 j σ j ) + j W 222 j σ j 2 ] · σ 2 , ( any TMA telescope )
A 222 j W 222 j σ j
B 222 2 j W 222 j σ j 2 ,
W = 1 2 ( 2 H A 222 + B 222 2 ) · ρ 2 .
W = ( A 131 · ρ ) ( ρ · ρ ) ( H A 222 ) · ρ 2 . ( B 222 2 0 )
W = [ H A 222 ] · ρ 2 A 131 = j W 131 j ρ j = 0

Metrics