Abstract

A thermo-optical variable optical attenuator (VOA), consisting of three cascaded three-waveguide directional couplers, was designed on Silicon-On-Insulator (SOI) wafer. Thermo-optical dynamic, static analysis and optical propagation characteristic simulation at the wavelength of 1550 nm were presented. The dynamic attenuation range from 0.14 dB to 50 dB was achieved by a refractive index (RI) variation: 0 to 5.55×10-3, (the corresponding temperature variation: 0 to 30 °C). The response time was about 5 µs, which was attributed to Si/Al2O3/Si structure. The device could be easily used to fabricate multi-channel VOA as the basic unit and integrated in silicon optoelectronic circuits.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Variable optical attenuators based on SOI with 3  μm top silicon layer

Pei Yuan, Yue Wang, Yuanda Wu, and Junming An
Appl. Opt. 58(17) 4630-4636 (2019)

All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides

Sungbong Park, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hidetaka Nishi, Hiroyuki Shinojima, and Sei-ichi Itabashi
Opt. Express 18(15) 15303-15310 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).
  2. S. M. Garner and S. Caracci, “Variable Optical Attenuator for Large-Scale Integration,” IEEE Photon. Technol. Lett. 14, 1560–1562 (2001).
    [Crossref]
  3. K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).
  4. M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).
  5. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
    [Crossref]
  6. T. Miya, “Silica-based planar light-wave circuits: passive and thermallyactive devices,” Quantum Electron. 6, 38–45 (2000).
  7. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
    [Crossref]
  8. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).
  9. A. Liu, L. Liao, D. Rubin, and H. Nguyen, “High speed optical modulator based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [Crossref] [PubMed]
  10. H. Rong, et. al. “A continuous-wave raman silicon laser,” Nature433, 725–728 (2005).
    [Crossref] [PubMed]
  11. H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
    [Crossref]
  12. G. K. Cellera and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93, 4955–4978 (2003).
  13. J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
    [Crossref]
  14. S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electron. 45, 1403–1411 (2001).
    [Crossref]
  15. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
    [Crossref]
  16. T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
    [Crossref]
  17. G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
    [Crossref]
  18. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
    [Crossref]
  19. T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).
  20. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol. 16, 1851–1853 (1998).
    [Crossref]
  21. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
    [Crossref]
  22. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14, 5266–5278 (2006).
    [Crossref] [PubMed]

2007 (2)

A. Liu, L. Liao, D. Rubin, and H. Nguyen, “High speed optical modulator based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref] [PubMed]

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

2006 (2)

2003 (3)

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

G. K. Cellera and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93, 4955–4978 (2003).

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

2002 (1)

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

2001 (4)

H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).

S. M. Garner and S. Caracci, “Variable Optical Attenuator for Large-Scale Integration,” IEEE Photon. Technol. Lett. 14, 1560–1562 (2001).
[Crossref]

K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).

S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electron. 45, 1403–1411 (2001).
[Crossref]

2000 (1)

T. Miya, “Silica-based planar light-wave circuits: passive and thermallyactive devices,” Quantum Electron. 6, 38–45 (2000).

1998 (2)

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol. 16, 1851–1853 (1998).
[Crossref]

1996 (1)

T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
[Crossref]

1992 (1)

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).

1991 (2)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

1989 (1)

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

Aalto, T.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Aoki, T.

K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).

Attanansio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Benson, T. M.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).

Biermann, U. K. P.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Bozeat, R. J.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).

Caracci, S.

S. M. Garner and S. Caracci, “Variable Optical Attenuator for Large-Scale Integration,” IEEE Photon. Technol. Lett. 14, 1560–1562 (2001).
[Crossref]

Cellera, G. K.

G. K. Cellera and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93, 4955–4978 (2003).

Chung, G.-S.

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Chung, P. S.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

Cristoloveanu, S.

G. K. Cellera and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93, 4955–4978 (2003).

S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electron. 45, 1403–1411 (2001).
[Crossref]

Filip, V.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Garner, S. M.

S. M. Garner and S. Caracci, “Variable Optical Attenuator for Large-Scale Integration,” IEEE Photon. Technol. Lett. 14, 1560–1562 (2001).
[Crossref]

Haisma, J.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Hasegawa, T.

H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).

Heimala, P.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Iizuka, S.

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

Iodice, M.

Ishida, M.

T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
[Crossref]

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Kapulainen, M.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Kawahito, S.

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Kawai, T.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

Kendall, P. C.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).

Kimura, T.

T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Kitoh, T.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

Koga, M.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Leppihalme, M.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Liao, L.

Liu, A.

Liu, A. Q.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

Lu, C.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Mazzi, G.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Miya, T.

T. Miya, “Silica-based planar light-wave circuits: passive and thermallyactive devices,” Quantum Electron. 6, 38–45 (2000).

Morimoto, K.

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

Morimoto, M.

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Nakamura, T.

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Nguyen, H.

Ohkawa, M.

H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).

Okuno, M.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

Pals, J. A.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[Crossref]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Pogossian, S. P.

Rong, H.

H. Rong, et. al. “A continuous-wave raman silicon laser,” Nature433, 725–728 (2005).
[Crossref] [PubMed]

Rubin, D.

Sato, K.

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Sengoku, A.

T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
[Crossref]

Sirleto, L.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Spierings, G. A. C. M.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

Suzakl, T.

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Tang, D. Y.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

Uetsuka, H.

H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).

Vescan, L.

Vonsovici, A.

Watanabe, Y.

K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).

Wong, C. K.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

Wong, H.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

Yliniemi, S.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Zhang, X. M.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

Electron. Lett. (2)

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC-type compact variable optical attenuator for photonic transportnetwork,” Electron. Lett. 34, 264–265 (1998).
[Crossref]

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM system,” Electron. Lett. 38, 382–383 (2002).
[Crossref]

Furukawa Rev. (2)

K. Sato, T. Aoki, and Y. Watanabe, “Development of a Variable Optical Attenuator,” Furukawa Rev. 20, 15–20 (2001).

M. Morimoto, K. Morimoto, K. Sato, and S. Iizuka, “Development of a Variable Optical Attenuator (VOA) Using MEMS Technology,” Furukawa Rev. 23, 26–31 (2003).

Hitachi Cable Rev. (1)

H. Uetsuka, T. Hasegawa, and M. Ohkawa, “Variable Optical Attenuators Combined with an Arrayed Waveguide Grating Filter for Next-generation WDM System,” Hitachi Cable Rev. 20, 15–18 (2001).

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of Lithium niborate modulators for fiber optics communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–80 (200).

IEEE Photon. Technol. Lett. (1)

S. M. Garner and S. Caracci, “Variable Optical Attenuator for Large-Scale Integration,” IEEE Photon. Technol. Lett. 14, 1560–1562 (2001).
[Crossref]

J. Appl. Phys. (1)

G. K. Cellera and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93, 4955–4978 (2003).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (3)

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, and J. A. Pals, “Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[Crossref]

T. Kimura, A. Sengoku, and M. Ishida, “Fabrication of Si/Al2O3/Si silicon on insulator structures grown by ultrahigh-vacuum CVD method,” Jpn. J. Appl. Phys. 35, 1001–1004 (1996).
[Crossref]

G.-S. Chung, S. Kawahito, M. Ishida, T. Suzakl, and T. Nakamura, “Novel pressure sensors using epitaxially stacked Si/Al2O3/Si structures for high-precision thickness control of silicon diaphragms,” Jpn. J. Appl. Phys. 30, 1378–1384 (1991).
[Crossref]

Microelectron. Reliab. (1)

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelectron. Reliab. 47, 1–10 (2007).
[Crossref]

Opt. Commun. (1)

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[Crossref]

Opt. Express (2)

Optoelectron. (1)

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” Optoelectron. 139, 67–70 (1992).

Proc. SPIE (1)

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, “Fast thermo-optical switch based on SOI waveguides,” Proc. SPIE 4987, 149–159 (2003).
[Crossref]

Quantum Electron. (1)

T. Miya, “Silica-based planar light-wave circuits: passive and thermallyactive devices,” Quantum Electron. 6, 38–45 (2000).

Solid State Electron. (1)

S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electron. 45, 1403–1411 (2001).
[Crossref]

Other (1)

H. Rong, et. al. “A continuous-wave raman silicon laser,” Nature433, 725–728 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the device. (Not in scale)
Fig. 2.
Fig. 2. (a) Cross section of three-rib waveguide; (b) Equivalent three layer planar waveguide using EIM; (c) The designed value(red point) of rib waveguide far away from the critical line allows greater fabrication tolerance
Fig. 3.
Fig. 3. Simulated relation between optical power and RI variation with different coupling region length. “on-state” is better than “off-state” in reducing RI variation. (One attenuation unit)
Fig. 4.
Fig. 4. (a) Relations between power attenuation and RI variation under design value (W=3 µm, h=4 µm, d=8 µm) (red lines), positive fabrication errors (W=3.1 µm, h=4.1 µm, d=7.8 µm) (green lines) and negative fabrication errors (W=2.9 µm, h=3.9 µm, d=8.2 µm) (black lines). (b) The zoom-in Figure of Fig. 4(a), which shows that the fabrication errors can bring more optical power loss in the case of no RI modulation.
Fig. 5.
Fig. 5. Steady state 2-D temperature profile.
Fig. 6.
Fig. 6. The horizontal 1-D temperature profile in transverse direction. (B-B direction of Fig. 5)
Fig. 7.
Fig. 7. The vertical 1-D temperature profile of the center waveguide. (A-A direction of Fig. 5)
Fig. 8.
Fig. 8. Temperature response at the center of the center waveguide. (“O” point of Fig. 5)
Fig. 9.
Fig. 9. Power attenuation as a function of the variation of N1. Blue, green, and red lines are the attenuation characteristics with negative error, designed values, and positive error, respectively.
Fig. 10.
Fig. 10. Relations between RI and temperature.
Fig. 11.
Fig. 11. The optical field propagation characteristic at ‘A’ point (ΔT=0°C) and ‘B’ point (ΔT=30°C) in Fig. 9
Fig. 12.
Fig. 12. Output optical power patterns at ‘A’ point (ΔT=0°C) and ‘B’ point (ΔT=30°C) in Fig. 9.

Tables (1)

Tables Icon

Table 1. Optical and thermal parameters used in BPM and FEM analysis

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ dA 10 ( z ) dz = j K 12 A 20 ( z ) exp ( j 2 δ 12 z ) j K 13 A 30 ( z ) exp ( j 2 δ 13 z ) dA 20 ( z ) dz = j K 21 A 10 ( z ) exp ( j 2 δ 21 z ) j K 23 A 30 ( z ) exp ( j 2 δ 23 z ) dA 30 ( z ) dz = j K 32 A 20 ( z ) exp ( j 2 δ 32 z ) j K 31 A 10 ( z ) exp ( j 2 δ 31 z )
K 13 = K 31 = K 2 = 2 γ 1 2 γ 2 2 e γ 2 ( 2 d + w ) [ β k 0 2 ( n 1 2 n 2 2 ) ( 2 + γ 2 w ) ]
K 12 = K 21 = K 23 = K 32 = K 0 = 2 γ 1 2 γ 2 2 e γ 2 d [ β k 0 2 ( n 1 2 n 2 2 ) ( 2 + γ 2 w ) ]
δ ij = [ ( β j β i ) + ( M j M i ) ] 2 = 0
{ A 10 ( z ) = a exp ( j K eff 1 z ) + b exp ( j K eff 2 z ) + C 10 exp ( j K 2 z ) 2 A 20 ( z ) = 2 K 0 [ a exp ( jK eff 1 z ) K eff 1 b exp ( jK eff 2 z ) K eff 2 ] + C 20 A 30 ( z ) = a exp ( j K eff 1 z ) + b exp ( j K eff 2 z ) + C 10 exp ( j K 2 z ) 2
Where , K eff 1 , 2 = [ 8 K 0 2 + K 2 2 K 2 ] 2
t < r 1 r 2
ρ c T t = k 2 T + Q ( x , y , z , t )

Metrics