Abstract

Optical antennas can enhance the coupling between free-space propagating light and the localized excitation of nanoscopic light emitters or receivers, thus forming the basis of many nanophotonic applications. Their functionality relies on an understanding of the relationship between the geometric parameters and the resulting near-field antenna modes. Using scattering-type scanning near-field optical microscopy (s-SNOM) with interferometric homodyne detection, we investigate the resonances of linear Au wire antennas designed for the mid-IR by probing specific vector near-field components. A simple effective wavelength scaling is observed for single wires with λ eff=λ/(2.0± 0.2), specific to the geometric and material parameters used. The disruption of the coherent current oscillation by introducing a gap gives rise to an effective multipolar mode for the two near-field coupled segments. Using antenna theory and numerical electrodynamics simulations two distinct coupling regimes are considered that scale with gap width or reactive near-field decay length, respectively. The results emphasize the distinct antenna behavior at optical frequencies compared to impedance matched radio frequency (RF) antennas and provide experimental confirmation of theoretically predicted scaling laws at optical frequencies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
    [CrossRef]
  2. V. Giannini and J. A. Sánchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008).
    [CrossRef] [PubMed]
  3. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
    [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
    [CrossRef] [PubMed]
  5. J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  6. P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
    [CrossRef]
  7. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
    [CrossRef]
  8. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
    [CrossRef]
  9. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
    [CrossRef] [PubMed]
  10. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
    [CrossRef]
  11. M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
    [CrossRef]
  12. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
    [CrossRef] [PubMed]
  13. S.-D. Liu, M.-T. Cheng, Z.-J. Yang, and Q.-Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008).
    [CrossRef] [PubMed]
  14. In some applications, a low-frequency feed line may be used to extract an electrical signal from an optical antenna, see, e.g., F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46, 418-428 (2005).
    [CrossRef]
  15. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  16. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
    [CrossRef]
  17. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
    [CrossRef]
  18. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  19. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  20. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007).
    [CrossRef] [PubMed]
  21. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
    [CrossRef] [PubMed]
  22. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
    [CrossRef] [PubMed]
  23. H. Fischer and O. J. F. Martin, "Engineering the optical response ofplasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
    [CrossRef] [PubMed]
  24. B. P. Joshi and Q.-H. Wei, "Cavity resonances of metal-dielectric-metal nanoantennas," Opt. Express 16, 10315-10322 (2008).
    [CrossRef] [PubMed]
  25. E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007).
    [CrossRef]
  26. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004).
    [CrossRef]
  27. K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
    [CrossRef]
  28. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
    [CrossRef] [PubMed]
  29. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
    [CrossRef]
  30. Since the detected signal is a demodulation of the tip-sample dither frequency, it actually represents the near-field gradient within the dither region rather than just the near-field intensity.
  31. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, "Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006).
    [CrossRef]
  32. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
    [CrossRef] [PubMed]
  33. In addition, a backscattered far-field background leads to a self-homodyne signal amplification with in general unspecified phase [34]. For weak sample scattering (this work) or strongly resonant (e.g., plasmonic) excitation [28], spatial phase variations of this background can be neglected resulting in a mere constant s-SNOM signal offset at constant phase.
  34. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
    [CrossRef]
  35. For details on phase-resolved imaging of IR active nanostructures, see A. Jones, R. Olmon, S. Skrabalak, Y. Xia, and M. Raschke (in preparation).
  36. C. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons, Inc., second edition, 1997.
  37. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. John Wiley & Sons, Inc., second edition, 1981.
  38. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
    [CrossRef]
  39. S. J. Orfanidis, Electromagnetic Waves and Antennas. Online book, retrieved August 2008. http://www. ece.rutgers.edu/~{}orfanidi/ewa/.
  40. G. V. Borgiotti, "A novel expression for the mutual admittance of planar radiating elements," IEEE Trans. Antennas Propag. AP-16, 329 (1968).
    [CrossRef]
  41. T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008).
    [CrossRef]
  42. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
    [CrossRef]
  43. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  44. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
    [CrossRef]
  45. R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
    [CrossRef]
  46. R. Hillenbrand, private communication, July 2008.
  47. A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008).
    [CrossRef]
  48. M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006).
    [CrossRef] [PubMed]

2008

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

V. Giannini and J. A. Sánchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008).
[CrossRef] [PubMed]

P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
[CrossRef]

S.-D. Liu, M.-T. Cheng, Z.-J. Yang, and Q.-Q. Wang, "Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter," Opt. Lett. 33, 851-853 (2008).
[CrossRef] [PubMed]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, "Engineering the optical response ofplasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
[CrossRef] [PubMed]

B. P. Joshi and Q.-H. Wei, "Cavity resonances of metal-dielectric-metal nanoantennas," Opt. Express 16, 10315-10322 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008).
[CrossRef]

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008).
[CrossRef]

2007

R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
[CrossRef]

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007).
[CrossRef] [PubMed]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, "Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006).
[CrossRef]

M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006).
[CrossRef] [PubMed]

2005

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

2004

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004).
[CrossRef]

2003

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

2001

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

2000

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

1968

G. V. Borgiotti, "A novel expression for the mutual admittance of planar radiating elements," IEEE Trans. Antennas Propag. AP-16, 329 (1968).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
[CrossRef]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Alda, J.

P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Bachelot, R.

Behr, N.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

Belkin, M. A.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Blaize, S.

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Boreman, G.

P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
[CrossRef]

Boreman, G. D.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Borgiotti, G. V.

G. V. Borgiotti, "A novel expression for the mutual admittance of planar radiating elements," IEEE Trans. Antennas Propag. AP-16, 329 (1968).
[CrossRef]

Bouhelier, A.

Bour, D.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008).
[CrossRef]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
[CrossRef] [PubMed]

Bryant, G.W.

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Capasso, F.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Castro, M. E.

Chang, S. H.

Cheng, M.-T.

Choi, J. E.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Choi, Y. C.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Codreanu, I.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Cornelius, T. W.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Coronado, E. A.

E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007).
[CrossRef]

Corzine, S.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Crozier, K. B.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Cubukcu, E.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Dreyer, J.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

Encina, E. R.

E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007).
[CrossRef]

Engheta, N.

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008).
[CrossRef]

Fahsold, G.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

Fischer, H.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

Fumeaux, C.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
[CrossRef] [PubMed]

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Giannini, V.

Gomez, L.

Gómez Rivas, J.

González, F. J.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Gray, S. K.

Gritz, M. A.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Guckenberger, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Hinrichs, K.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

Höfler, G.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Hua, F.

Jeon, S.

Jones, A. C.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Joshi, B. P.

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Karim, S.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Keilmann, F.

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Kelley, B. K.

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kihm, H. W.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Kim, C.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Kim, D. H.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

Kim, W. J.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Knoll, W.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Kolb, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Krenz, P.

P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Lee, J.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Lee, K. G.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Lerondel, G.

Li, Z.-Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Lienau, C.

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
[CrossRef]

Lienau, Q. H.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Liu, S.-D.

Lovrincic, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

M¨uhlschlegel, P.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, "Engineering the optical response ofplasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
[CrossRef] [PubMed]

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

Molina, L.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

Muskens, O. L.

Neacsu, C. C.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

Neubrech, F.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Neumann, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Nguyen, Q.

R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
[CrossRef]

Novotny, L.

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Ocelic, N.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Ossikovski, R.

R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
[CrossRef]

Park, B.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Park, C.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
[CrossRef]

Picardi, G.

R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
[CrossRef]

Pohl, D. W.

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Pohl, D.W.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Raschke, M. B.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rogers, J. A.

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

Ropers, H.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Royer, P.

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Schaich, W. L.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Seideman, T.

M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006).
[CrossRef] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Stefanon, I.

Sukharev, M.

M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

Taubner, T.

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

Toimil-Molares, M. E.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Wang, Q.-Q.

Wei, Q.-H.

Wiederrecht, G. P.

Wiley, B. J.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Woo, S. B.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Yang, Z.-J.

Yoon, D. J.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

Yu, N.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Appl. Phys. B

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Appl. Phys. Lett.

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113-3 (2007).
[CrossRef]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89, 253104-3 (2006).
[CrossRef]

Chem. PhysChem.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," Chem. PhysChem. 6, 2197-2203 (2005).
[CrossRef]

IEEE Trans. Antennas Propag.

G. V. Borgiotti, "A novel expression for the mutual admittance of planar radiating elements," IEEE Trans. Antennas Propag. AP-16, 329 (1968).
[CrossRef]

Infrared Phys. Technol.

P. Krenz, J. Alda, and G. Boreman, "Orthogonal infrared dipole antenna," Infrared Phys. Technol. 51, 340-343 (2008).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000).
[CrossRef]

J. Appl. Phys.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Microsc.

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. C

E. R. Encina and E. A. Coronado, "Resonance conditions for multipole plasmon excitations in noble metal nanorods," J. Phys. Chem. C 111, 16796-16801 (2007).
[CrossRef]

Laser Photon. Rev.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 136-159 (2008).
[CrossRef]

Nano. Lett.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano. Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano. Lett. 8, 631-636 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, "Optical near-field mapping of plasmonic nanoprisms," Nano. Lett. 8, 3357-3363 (2008).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano. Lett. 6, 715-719 (2006).
[CrossRef] [PubMed]

Nat. Photonics

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics 2, 226-229 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, "Nanomechanical control of an optical antenna," Nat. Photonics 2, 230-233 (2008).
[CrossRef]

Nature Photon.

K. G. Lee, H. W. Kihm, KihmJ. E. , ChoiW. J. , KimH. , RopersC. , ParkD. J. , YoonY. C. , ChoiS. B. , WooD. H. , KimJ. , LeeB. , ParkQ. H. , LienauC. , and KimD. S , "Vector field microscopic imaging of light," Nature Photon. 1, 53-56 (2007).
[CrossRef]

A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2, 307-310 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Optics Communications

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philos. Trans. R. Soc. London Ser. A 362, 787-805 (2004).
[CrossRef]

Phys. Rev. B

J. Aizpurua, G.W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

R. Ossikovski, Q. Nguyen, and G. Picardi, "Simple model for the polarization effects in tip-enhanced raman spectroscopy," Phys. Rev. B 75, 045412 (2007).
[CrossRef]

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe raman spectroscopy with single-molecule sensitivity," Phys. Rev. B 73, 193406-4 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, "High-resolution near-field raman microscopy of singlewalled carbon nanotubes," Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402-4 (2005).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402-4 (2006).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap," Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4, (2005).
[CrossRef] [PubMed]

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi B

T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008).
[CrossRef]

Science

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Other

Since the detected signal is a demodulation of the tip-sample dither frequency, it actually represents the near-field gradient within the dither region rather than just the near-field intensity.

In addition, a backscattered far-field background leads to a self-homodyne signal amplification with in general unspecified phase [34]. For weak sample scattering (this work) or strongly resonant (e.g., plasmonic) excitation [28], spatial phase variations of this background can be neglected resulting in a mere constant s-SNOM signal offset at constant phase.

In some applications, a low-frequency feed line may be used to extract an electrical signal from an optical antenna, see, e.g., F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46, 418-428 (2005).
[CrossRef]

S. J. Orfanidis, Electromagnetic Waves and Antennas. Online book, retrieved August 2008. http://www. ece.rutgers.edu/~{}orfanidi/ewa/.

For details on phase-resolved imaging of IR active nanostructures, see A. Jones, R. Olmon, S. Skrabalak, Y. Xia, and M. Raschke (in preparation).

C. Balanis, Antenna Theory: Analysis and Design. John Wiley & Sons, Inc., second edition, 1997.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. John Wiley & Sons, Inc., second edition, 1981.

R. Hillenbrand, private communication, July 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scattering-type scanning near-field optical microscope (s-SNOM) with interferometric homodyne detection to probe specific near-field vector components of optical antennas.

Fig. 2.
Fig. 2.

Topography (a) for a L=1.6µm linear IR dipole antenna and E z s-SNOM near-field image (c), with corresponding line scans (b) and (d). s-SNOM contrast (c) is due to selective phase amplification as seen in the two 180° out of phase line scans (solid vs. dashed line in (d)). Corresponding simulated in-plane (e) and cross sectional (f) E z distribution for a half-cylinder model antenna geometry. Dashed lines in (c) and (e) demarcate the topography.

Fig. 3.
Fig. 3.

Topography (a) and E z s-SNOM signal (b) for a L=5.0µm antenna showing the first higher order mode corresponding to Lλ eff. The resulting quadrupole oscillation is reproduced in the corresponding E z -field simulation (c) showing enhanced field strength at the wire ends.

Fig. 4.
Fig. 4.

Topography (a) and (b) and E z s-SNOM signal (c) and (d) for a structure of overall length L=2.0µm with a gap width of 150 nm and corresponding results for a similar geometry of length L=3.4µm (e)–(h). Introducing the gap gives rise to a disruption of the original dipole resonance and a splitting into two coupled individual dipole modes. Numerical simulations for expected field distributions for E z (i) and E y (j).

Fig. 5.
Fig. 5.

Coupling of two equal-length ideal half-wave coaxial dipole antennas separated by distance d relative to the wavelength. The coupling is manifested in a change in mutual impedance |Z21/Z22| (here normalized by the self-impedance at the input) with decreased separation distance. The associated oscillatory variations in resonant length converge to the length of a single resonant dipole.

Fig. 6.
Fig. 6.

The s-SNOM E y field component imaged above a monomer antenna of length L=1.6µm (a) and (b). Corresponding dimer fields for lengths L=3.35µm and gap widths of 200 µm (c) and (d) and 50 µm (e) and (f). The in-phase nature of the field on the metal is predicted by theory, but off the metal, no field is seen in the gap or beyond the antenna ends contrary to theory due to preferential E z scattering and tip depolarization effects.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z 21 = i μ 0 ε 0 4 π sin 2 ( kh ) h h F ( z ) dz ,
F ( z ) = [ e ik ( R h ) R h + e ik ( R + h ) R + h 2 cos ( kh ) e ikR R ] sin [ k ( h z ) ] ,

Metrics