Abstract

The impact of the system design on the control of coupling between planar waveguide modes and surface plasmon polaritons (SPP) is analyzed. We examine how the efficiency of the coupling can be enhanced by an appropriate dimensioning of a multi-layer device structure without using additional gratings. We demonstrate that by proper design the length of the device can be dramatically reduced through fabrication a surface plasmon resonance sensor based on the SPP-photon transformation rather then on SPP dissipation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer-Verlag, New York, 1988).
  2. V. M. Agranovich and D. L. Mills, Surface Polaritons, (Nauka, Moscow, 1985).
  3. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
    [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
    [CrossRef]
  5. S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).
  6. M. I. Stockman, "Electromagnetic Theory of SERS," in Springer Series Topics in Applied Physics,edited by K. Kneipp, M. Moskovits and H. Kneipp, Surface Enhanced Raman Scattering Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006).
  7. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
    [CrossRef]
  8. J. Homola, "Present and future of surface plasmon resonance biosensors (review)," Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  9. P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006).
    [CrossRef]
  10. R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
    [CrossRef] [PubMed]
  11. R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995).
    [CrossRef]
  12. H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma (1987) "Modecoupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler," Proc. ECIO’87 (Glasgow, 11-13 May) pp. 217-220.
  13. V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
    [CrossRef]
  14. A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
    [CrossRef]
  15. A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
    [CrossRef]
  16. S. I. Bozhevolnyi, J. E., K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008 - 3011 (2001).
    [CrossRef] [PubMed]
  17. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol.  23, 413-422 (2005)
    [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  19. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
    [CrossRef]
  20. G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008).
    [CrossRef]
  21. G. Stewart et al., "Surface plasmon resonances in thin metal films for optical fiber devices," in Proc. Optical Fiber Sensors, Washington, DC, 1988, pp. 328-331.
  22. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
    [CrossRef]
  23. J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996).
    [CrossRef]
  24. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007)
    [CrossRef] [PubMed]
  25. G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007).
    [CrossRef]
  26. Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007)
    [CrossRef] [PubMed]
  27. M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
    [CrossRef]
  28. M. Skorobogatiy and A. Kabashin "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
    [CrossRef] [PubMed]
  29. H. Ditlbacher, N. Galler, D.M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
    [CrossRef] [PubMed]
  30. T. Nakano, K. Baba, and M. Miyagi, "Insertion loss and extinction ratio of a surface plasmon- polariton polarizer: theoretical analysis," J. Opt. Soc. Am. B 11, 2030-2035 (1994)
    [CrossRef]
  31. C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998).
    [CrossRef]
  32. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
    [CrossRef]
  33. E. D. Palik, Handbook of Optical Constants and Solids, (Academic, Orlando, 1985).
  34. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
    [CrossRef]
  35. Katsunari Okamoto, Fundamentals of Optical Waveguides (Academic Press, first Edition, 2000).
  36. Poche Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).
  37. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1975).
  38. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
    [CrossRef]
  39. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
    [CrossRef]

2008 (4)

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
[CrossRef]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

H. Ditlbacher, N. Galler, D.M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008).
[CrossRef]

2007 (6)

Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007)
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007)
[CrossRef] [PubMed]

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007).
[CrossRef]

2006 (5)

M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006).
[CrossRef]

S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).

M. Skorobogatiy and A. Kabashin "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol.  23, 413-422 (2005)
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
[CrossRef]

2003 (2)

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

J. Homola, "Present and future of surface plasmon resonance biosensors (review)," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2001 (1)

S. I. Bozhevolnyi, J. E., K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008 - 3011 (2001).
[CrossRef] [PubMed]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

1998 (1)

C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998).
[CrossRef]

1996 (1)

J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996).
[CrossRef]

1995 (1)

R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995).
[CrossRef]

1994 (1)

1990 (1)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

1983 (1)

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Abuknesha, R. A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

Albert, J.

Alexander, R. W.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Aussenegg, F. R.

Baba, K.

Bayvel, P.

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Bell, R. J.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Bell, R. R.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Bell, S. E.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol.  23, 413-422 (2005)
[CrossRef]

S. I. Bozhevolnyi, J. E., K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008 - 3011 (2001).
[CrossRef] [PubMed]

Brecht, A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

Chen, C-H

C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998).
[CrossRef]

Ctyroky, J.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

Dereux, A.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Devaux, E.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

Dwivedi, S.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

Ebbesen, T. W.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Elliott, J.

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Fassi Fehri, M.

Galler, N.

Garcia-Vidal, F. J.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
[CrossRef]

Gauglitz, G.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Gauvreau, B.

Gonzalez, M. U.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Gupta, B. D.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

Harris, R. D.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

Hassani, A.

Hoekstra, H. J. W. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Hohenau, A.

Homola, J.

J. Homola, "Present and future of surface plasmon resonance biosensors (review)," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

Kabashin, A.

Kabashin, A. V.

G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008).
[CrossRef]

M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Kashyap, R.

G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008).
[CrossRef]

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007).
[CrossRef]

Kats, A. V.

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
[CrossRef]

Kjaer, K.

Koller, D. M.

Krenn, J. R.

H. Ditlbacher, N. Galler, D.M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lambeck, P. V.

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006).
[CrossRef]

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Larsen, M. S.

Leitner, A.

Leosson, K.

Long, L. L.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Luff, B. J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

Lyndin, N. M.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
[CrossRef]

Martin-Moreno, L.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
[CrossRef]

Mikhailov, V.

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Miyagi, M.

Musa, S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Nakano, T.

Nemova, G.

G. Nemova, A. V. Kabashin, and R. Kashyap, "Surface plasmon-polariton Mach-Zehnder refractive index sensor," J. Opt. Soc. Am. B 25, 1673-1677 (2008).
[CrossRef]

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007).
[CrossRef]

Nesterov, M. L.

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
[CrossRef]

Nikitin, A. Yu.

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
[CrossRef]

Nikolajsen, T.

Ordal, M. A.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Piehler, J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

Radko, I. P.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Shalaev, V.M.

S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).

Sharma, A. K.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

Shevchenko, Y. Y.

Skorobogatiy, M.

M. Skorobogatiy and A. Kabashin "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006).
[CrossRef] [PubMed]

M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Skorobogatiy, M. A.

Slavík, R.

J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

Usievich, B.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wang, L.

C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998).
[CrossRef]

Ward, C. A.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Weeber, J.-C.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Wilkinson, J. S.

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995).
[CrossRef]

Wurtz, G.

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Y.,

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

Zayats, A. V. P.

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, "Present and future of surface plasmon resonance biosensors (review)," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

App. Opt. (1)

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and Win the infrared and far infrared," App. Opt. 22, 1099 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, "Integrated optical surface plasmon resonance immunoprobe for simazine detection," Biosensors and Bioelectronics 14, 377-386 (1999).
[CrossRef] [PubMed]

Electronics Letters (1)

J. Homola and R. Slavík, "Fibre-Optic Sensor based on Surface Plasmon Resonance," Electronics Letters 32, 480 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

C-H Chen and L. Wang, "Design of Finite-length metal-clad optical waveguide polarizer," IEEE J. Quantum Electron. 34, 1089-97 (1998).
[CrossRef]

J. Lightwave Technol. (2)

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol.  23, 413-422 (2005)
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmons polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006).
[CrossRef]

Nat. Phys. (1)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation," Opt. Commun. 275, 76-82, (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Part I (1)

S. I. Bozhevolnyi and V. M. Shalaev, "Nanophotonics with Surface Plasmons," Photonics Spectra, Part I,  58; Part II, 68 (2006).

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. B. (3)

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency," Phys. Rev. B. 72, 193405 (2005).
[CrossRef]

A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, "Excitation of surface plasmon-polaritons in metal films with double periodic modulation: Anomalous optical effects," Phys. Rev. B. 76, 045413 (2007).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Influence of material properties on extraordinary optical transmission through hole arrays," Phys. Rev. B. 77, 075401 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, J. E., K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008 - 3011 (2001).
[CrossRef] [PubMed]

V. Mikhailov, G. Wurtz, J. Elliott, P. Bayvel, and A. V. P. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901-1 (2007).
[CrossRef]

Plasmonics (1)

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, "Influence of Design Parameters on the Performance of a Surface Plasmon Resonance Based Fiber Optic Sensor," Plasmonics 379-86 (2008).
[CrossRef]

Sens. Act. B (1)

R. D. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Act. B 29, 261-267 (1995).
[CrossRef]

Sens. Actuators, B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Sensors and Actuators B (1)

J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J.S. Wilkinson, B. Usievich, and N. M. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sensors and Actuators B 5466-73 (1999).
[CrossRef]

Other (9)

E. D. Palik, Handbook of Optical Constants and Solids, (Academic, Orlando, 1985).

Katsunari Okamoto, Fundamentals of Optical Waveguides (Academic Press, first Edition, 2000).

Poche Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988).

A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1975).

H. J. M. Kreuwel, P. V. Lambeck, J. M. N. Beltman, and T. J. A. Popma (1987) "Modecoupling in multilayer structures applied to a chemical sensor and a wavelength selective directional coupler," Proc. ECIO’87 (Glasgow, 11-13 May) pp. 217-220.

G. Stewart et al., "Surface plasmon resonances in thin metal films for optical fiber devices," in Proc. Optical Fiber Sensors, Washington, DC, 1988, pp. 328-331.

H. Raether, Surface Plasmons (Springer-Verlag, New York, 1988).

V. M. Agranovich and D. L. Mills, Surface Polaritons, (Nauka, Moscow, 1985).

M. I. Stockman, "Electromagnetic Theory of SERS," in Springer Series Topics in Applied Physics,edited by K. Kneipp, M. Moskovits and H. Kneipp, Surface Enhanced Raman Scattering Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Geometry of the problem and a typical dielectric permittivity distribution. The structure of the SPP modes for both thick and thin metal films are schematically shown along with a waveguide mode.

Fig. 2.
Fig. 2.

Dispersion relations for the multi-layer system of Fig. 1. Thick (red) curves represent the solutions of the complete dispersion relation given in Eq. (12). Thin (gray) WG-named curves correspond to the dispersion relation of the solitary dielectric waveguide, Eq. (20), and a thick silver metal film, d→∞. The dashed (blue) curves represent the high-frequency and low-frequency solutions of the dispersion relation for a solitary thin silver metal film. The parameters are: n-=1.37, nb =n+=1.439, nw =1.585, the thicknesses of the layers are d=58 nm, =400 nm, L=250 nm.

Fig. 3.
Fig. 3.

The magnetic field distribution for the two SPP eigenmodes of the solitary metal film at ω=ω res (ω res L/c=3.37). α 2 high=2.268, α 2 low=2.649 other parameters are the same as in Fig. 2. The a (b) figure is the field distribution for the high-frequency (low-frequency) SPP mode of the metal film corresponding to the upper (lower) SPP dispersion curve in Fig. 2.

Fig. 4.
Fig. 4.

The magnetic field evolution for the solitary waveguide mode, α=1.56, other parameters are the same as in Fig. 2

Fig. 5.
Fig. 5.

The magnetic field evolution for the eigenmode of the system corresponding to the point 1 in Fig. 2. Compare the field distribution with that of the right in Fig. 3. The parameters are the same as in Fig. 2.

Fig. 6.
Fig. 6.

The magnetic field evolution for the eigenmodes of the system corresponding to the points 2 (a) and 3 (b) in Fig. 2.

Fig. 7.
Fig. 7.

Squared magnetic field evolution for three eigenmodes of the system for the points 1, 2 and 3 of Fig. 2, and the dielectric permittivity distribution. The parameters are the same as in Fig. 2.

Fig. 8.
Fig. 8.

Frequency dependence of the transmission coefficient for the metal film length ℒ>100 µm (solid line), and for ℒ=40 µm~X beat/2 (dashed line) obtained by direct numeric simulations. The ripples are caused by the finite film length. The arrows a and b indicate the frequency values below which the radiative losses arise for the modes 3 and 2, respectively. Dotted lines present results obtained by the mode expansion procedure. The thickness of the buffer layer is =400 nm.

Fig. 9.
Fig. 9.

The squared magnetic field distribution at the resonance frequency, direct numeric simulation.

Fig. 10.
Fig. 10.

The squared magnetic field evolution at the resonance frequency for the structure with the metal film, which is cut at some special length of 40 µm. Direct numeric simulation.

Tables (1)

Tables Icon

Table 1. Table of common material parameters for the SPR sensing devices*

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

H τ ( x , z ) = H τ exp { ik x x + i τ k z τ [ z δ τ , + ( d + + L ) ] } ,
H M ( x , z ) = σ = ± H M σ exp { ik x x + i σ k z M [ z z M ] } ,
E x m ( x , z ) = i k ε m z H m ( x , z ) ,
E z m ( x , z ) = i k ε m x H m ( x , z ) ,
E u τ ( x , z ) = E u τ exp { ik x x + i τ k z τ [ z δ τ , + ( d + + L ) ] } ,
E u M ( x , z ) = σ = ± E u M σ exp { ik x x + i σ k z M [ z z M ] } .
E x τ = τ k z τ k ε τ H τ , E z τ = k x k ε τ H τ ,
E x M σ = σ k z M k ε M H M σ , E z M σ = k x k ε M H M σ .
α = k x k , β m = k z m k ε m ,
E x τ = τ β τ H τ , E z τ = α ε τ H τ ,
E x M σ = σ β M H M σ , E z M σ = α ε M H M σ .
β w [ ia w tan ϕ b w ] + β + [ a w ib w tan ϕ ] = 0 ,
a w = a b + b b tanh F , b w = β b β w [ a b tanh F + b b ] ,
a b = 1 + β - ξ tanh Φ , b b = ξ β b [ tanh Φ + β - ξ ] ,
Φ = ik z c d , ϕ = k z w L , F = ik z b .
H c σ = H - 2 ( 1 σ β - β c ) , H b σ = H - 2 { a b σ b b } ,
H w σ = H - 2 { a w σ b w } , H + = H - [ a w cos ϕ ib w sin ϕ ] .
β b + β + i ( β w + β + β b β w ) tan ϕ = 0 ,
a b + b b = 0 ,
( β b tanh Φ + ξ ) ( β - tanh Φ + ξ ) ξ 2 cosh 2 Φ = 0 .
β b = β + b ξ tanh ( Φ 2 ) , β b = β b ξ coth ( Φ 2 ) ,
ε w kL = 1 β w arctan [ i ( β b + β + ) β w ( β w ) 2 + β b β + ] + n π β w , n = 0 , ± 1 ,
X beat = 2 π k x 2 k x 3 ,
H ( x , z , ω ) = i C i ( ω ) · H i ( x , z , ω ) ,
C i ( ω ) = H w ( 0 , z , ω ) k xi ( ω ) k ( ω ) ε ( z , ω ) H i * ( 0 , z , ω ) dz ,

Metrics