Abstract

Contrast in photoacoustic imaging is primarily determined by optical absorption. This paper proposes a subband imaging method to further enhance the image contrast. The method is based on media with different absorptions generating acoustic waves with different frequency contents. Generally, assuming all other conditions remain the same, a high-absorption medium generates acoustic waves with higher frequency components, and hence the imaging contrast can be enhanced by appropriate selection of the spectral subbands. This study employed both finite-difference, time-domain-based simulations and phantom imaging. The numerical results show that the peak frequencies of the signals for objects with absorption coefficients of 1 and 100 cmM–1 were 2.4 and 7.8 MHz, respectively. Imaging an agar-based phantom further demonstrated that the contrast between two objects with absorption coefficients of 5.01 and 41.75 cm–1 can be improved by 4-10 dB when the frequency band was changed from 0–7 to 7–14 MHz. Finally, a method to further enhance the contrast based on optimal weighting is also presented. The proposed method is of particular interest in photoacoustic molecular imaging.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhao and R. Myllyla, "Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light," Appl. Opt. 44, 7845-7852 (2005).
    [CrossRef]
  2. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997).
    [CrossRef]
  3. H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).
  4. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002).
    [CrossRef]
  5. C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
    [CrossRef]
  6. C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
    [CrossRef]
  7. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006).
  8. C.-K. Liao, M.-L. Li, and P.-C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29, 2506-2508 (2004).
    [CrossRef]
  9. M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
    [CrossRef]
  10. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
    [CrossRef]
  11. P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phy. 62, 671-722 (1999).
    [CrossRef]
  12. C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005).
    [CrossRef]
  13. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, Washington, 2007).
  14. P. N. Prasad, Introduction to Biophotonics, (John Wiley and Sons, New Jersey, 2003).
  15. P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
    [CrossRef]
  16. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
    [CrossRef]
  17. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
    [CrossRef]
  18. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics, (American Institute of Physics, New York, 1993) Chap 2, pp 45-48.
  19. D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
    [CrossRef]
  20. P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
    [CrossRef]

2007 (3)

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

2006 (1)

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006).

2005 (3)

C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005).
[CrossRef]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

Z. Zhao and R. Myllyla, "Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: photoacoustic detection of scattered light," Appl. Opt. 44, 7845-7852 (2005).
[CrossRef]

2004 (3)

C.-K. Liao, M.-L. Li, and P.-C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29, 2506-2508 (2004).
[CrossRef]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

2003 (1)

M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef]

2002 (1)

1999 (3)

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef]

P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phy. 62, 671-722 (1999).
[CrossRef]

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

1997 (2)

P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997).
[CrossRef]

Ashton, H. S.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Chen, C.-D.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Deyo, D. J.

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Esenaliev, R. O.

Freeborn, S. S.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Hannigan, J.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Huang, D.-H.

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

Huang, S. W.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

Huang, S.-W.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

Jacques, S. L.

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Kruger, G. A.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef]

Kruger, R. A.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef]

Ku, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Larin, K. V.

Larina, I. V.

Li, M.-L.

Li, P.-C.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005).
[CrossRef]

C.-K. Liao, M.-L. Li, and P.-C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29, 2506-2508 (2004).
[CrossRef]

Liao, C.-K.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005).
[CrossRef]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

C.-K. Liao, M.-L. Li, and P.-C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29, 2506-2508 (2004).
[CrossRef]

Lindberg, J.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Mackenzie, H. A.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Macovski, A.

P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
[CrossRef]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002).
[CrossRef]

Myllyla, R.

O’Neal, D. P.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. 36, 402-415 (1997).
[CrossRef]

Pao, K.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Prough, D. S.

Rae, P.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Reinecke, D. R.

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef]

Shen, Y.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Shieh, D.-B.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

Sommer, F. G.

P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
[CrossRef]

Spiers, S.

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

Stetson, P. F.

P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
[CrossRef]

Stoica, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Tittel, F. K.

Wang, C. R. C.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

Wang, C.-R. C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

Wang, L. V.

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006).

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef]

Wang, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Wei, C. W.

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

Wei, C.-W.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

Wells, P. N. T.

P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phy. 62, 671-722 (1999).
[CrossRef]

Wu, Y.-N.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

Xie, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006).

M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef]

Xu, Y.

M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef]

Zhao, Z.

Appl. Opt. (3)

Clin. Chem. (1)

H. A. Mackenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999).

IEEE Trans. Biomed. Eng. (1)

M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003).
[CrossRef]

IEEE Trans. Med. Imaging (1)

P. F. Stetson, F. G. Sommer, and A. Macovski, "Lesion contrast enhancement in medical ultrasound imaging," IEEE Trans. Med. Imaging 16, 416-425 (1997).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

C. W. Wei, S. W. Huang, C. R. C. Wang, and P.-C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, "Photoacoustic imaging of multiple targets using gold nanorods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1642-1647 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, "Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method," J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef]

J. Biomed. Opt. (1)

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006 (2007).
[CrossRef]

Med. Phys. (1)

R. A. Kruger, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography - technical considerations," Med. Phys. 26, 1832-1837 (1999).
[CrossRef]

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, "Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography," Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef]

Nano Lett. (1)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, "Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain," Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

C.-K. Liao and P.-C. Li, "Reconstruction of optical energy deposition for backward optoacoustic imaging," Opt. Quantum Electron. 37, 1339-1351 (2005).
[CrossRef]

Rep. Prog. Phy. (1)

P. N. T. Wells, "Ultrasonic imaging of the human body," Rep. Prog. Phy. 62, 671-722 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 1-22 (2006).

Other (3)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, (SPIE Press, Bellingham, Washington, 2007).

P. N. Prasad, Introduction to Biophotonics, (John Wiley and Sons, New Jersey, 2003).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics, (American Institute of Physics, New York, 1993) Chap 2, pp 45-48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics