Abstract

Plasmon-like excitation at the interface between fully polymeric fiber sensor and gaseous analyte is demonstrated theoretically in terahertz regime. Such plasmonic excitation occurs on top of a ~30µm ferroelectric PVDF layer wrapped around a subwavelength porous polymer fiber. In a view of designing a fiber-based sensor of analyte refractive index, phase matching of a plasmon-like mode with the fundamental core guided mode of a low loss porous fiber is then demonstrated for the challenging case of a gaseous analyte. We then demonstrate the possibility of designing high sensitivity sensors with amplitude resolution of 3.4·10-4 RIU, and spectral resolution of 1.3·10-4 RIU in THz regime. Finally, novel sensing methodology based on detection of changes in the core mode dispersion is proposed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982).
  2. J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
    [CrossRef]
  3. A. Hassani and M. Skorobogatiy, "Design criteria for the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007).
    [CrossRef]
  4. M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006).
    [CrossRef]
  5. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007).
    [CrossRef] [PubMed]
  6. D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
    [CrossRef]
  7. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).
    [CrossRef] [PubMed]
  8. J.F. O’Hara and R. D. Averitt, "Prism coupling to terahertz surface plasmon polaritons," Opt. Express 13, 6117-6126 (2005).
    [CrossRef] [PubMed]
  9. K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006).
    [CrossRef] [PubMed]
  10. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
    [CrossRef] [PubMed]
  11. J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
    [CrossRef]
  12. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
    [CrossRef] [PubMed]
  13. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
    [CrossRef] [PubMed]
  14. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, "Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals," Opt. Express 15, 14804-14809 (2007).
    [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  16. J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
    [CrossRef]
  17. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF Cladding Terahertz Waveguide," J. Lightwave Technol. 23, 2469-2475 (2005).
    [CrossRef]
  18. Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).
  19. M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).
  20. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  21. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
    [CrossRef] [PubMed]
  22. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, pp. 1175-1198, (2003)
    [CrossRef] [PubMed]
  23. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, pp. 10851-64, (2006)
    [CrossRef] [PubMed]
  24. S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004)
    [CrossRef]
  25. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
    [CrossRef]
  26. R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
    [CrossRef]

2008 (3)

M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (8)

M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006).
[CrossRef]

K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, pp. 10851-64, (2006)
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004)
[CrossRef]

2003 (2)

1998 (2)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1995 (1)

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Akiyama, K.

R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
[CrossRef]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Averitt, R. D.

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

Chai, L.

Chen, Y.

Chevillea, R. A.

S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004)
[CrossRef]

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).

Engeness, T. D.

Fang, N.

D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Fehri, M. F.

Fink, Y.

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Gauvreau, B.

Guo, N.

M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).

Guo, R.

R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
[CrossRef]

Harmon, S. A.

S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004)
[CrossRef]

Hassani, A.

Hidaka, T.

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Holdenz, A. J.

J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Homola, J.

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Hu, M.

Ibanescu, M.

Ichikawa, S.

Ito, H.

R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF Cladding Terahertz Waveguide," J. Lightwave Technol. 23, 2469-2475 (2005).
[CrossRef]

Jacobs, S.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Jeoung, S. C.

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Johnson, S. G.

Kabashin, A.

Kabashin, A. V.

M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006).
[CrossRef]

Kim, D. S.

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Kuhlmey, B. T.

Kurz, H.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

Lee, J. W.

Li, Y.

Lienau, Ch.

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

McPhedran, R. C.

Minamide, H.

R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
[CrossRef]

T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF Cladding Terahertz Waveguide," J. Lightwave Technol. 23, 2469-2475 (2005).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006).
[CrossRef] [PubMed]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

Miyamaru, F.

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

Nishizawa, J.

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

O’Hara, J.F.

Otani, C.

Park, D. J.

Park, Q. H.

Pathmanandavel, K.

Pendry, J. B.

J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Planken, P. C. M.

Qiu, M.

Rivas, J. G.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

Robbinsz, D. J.

J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Seo, M. A.

Skorobogatiy, M.

M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani and M. Skorobogatiy, "Design criteria for the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007).
[CrossRef]

M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006).
[CrossRef]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, pp. 1175-1198, (2003)
[CrossRef] [PubMed]

Skorobogatiy, M. A.

Snchez-Gil, J. A.

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

Song, Z.

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sun, C.

D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Suzuki, T.

Takeda, M. W.

Tamura, K.

Wang, C. Y.

Wang, K.

K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006).
[CrossRef] [PubMed]

Weisberg, O.

Wu, D.

D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Xing, Q.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhang, X.

D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

Zhang, Z.

Appl. Phys. B (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss,"Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B 67, 379390, (1998)
[CrossRef]

Appl. Phys. Lett. (6)

R. Guo, K. Akiyama, H. Minamide, and H. Ito, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-9, (2007)
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Porous Terahertz Fibers Containing Multiple Subwavelength Holes," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

S. A. Harmon and R. A. Chevillea, "Part-per-million gas detection from long-baseline THz spectroscopy," Appl. Phys. Lett. 85, 2128-2130, (2004)
[CrossRef]

M. Skorobogatiy and A. V. Kabashin, "Photon Crystal waveguide-based surface plasmon resonance bio-sensor," Appl. Phys. Lett. 89, 143518-143521 (2006).
[CrossRef]

D. Wu, N. Fang, C. Sun and X. Zhang, "Terahertz plasmonic high pass filter," Appl. Phys. Lett. 83, 201-203 (2003).
[CrossRef]

J. G. Rivas, M. Kuttge, H. Kurz, P. H. Bolivar, and J. A. Snchez-Gil "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106-082109 (2006).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holdenz, D. J. Robbinsz, and W. J. Stewartz, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

Opt. Express (9)

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, pp. 1175-1198, (2003)
[CrossRef] [PubMed]

J.F. O’Hara and R. D. Averitt, "Prism coupling to terahertz surface plasmon polaritons," Opt. Express 13, 6117-6126 (2005).
[CrossRef] [PubMed]

M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005).
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007).
[CrossRef] [PubMed]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, "Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals," Opt. Express 15, 14804-14809 (2007).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006).
[CrossRef] [PubMed]

B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, pp. 10851-64, (2006)
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Phys. Rev. Lett. 97, 176805-176807 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-147404 (2006).
[CrossRef] [PubMed]

Proceedings SPIE (1)

M. Skorobogatiy, A. Dupuis, A. Hassani, and N. Guo, "Designs of porous polymer THz fibers," Proceedings SPIE 6892, 51 (2008).

Sens. Actuators B (1)

J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401-405 (1995).
[CrossRef]

Other (1)

V. M. Agranovich and D. L. Mills, Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The real and imaginary parts of the refractive index of ferroelectric PVDF.

Fig. 2.
Fig. 2.

Schematic of a porous THz fiber with a PVDF layer facing analyte.

Fig. 3.
Fig. 3.

Avoided crossing of the dispersion relations of the fundamental core mode and a THz plasmon-like excitation in a porous fiber with PVDF layer. The figure shows the a) real, and b) imaginary parts of the refractive index of the two modes as a function of wavelength.

Fig. 4.
Fig. 4.

Longitudinal energy flux component distribution across the fiber crossection for the core guided mode in the vicinity of a phase matching point with a plasmon. Plots (a) and (b) are calculated for the points (a) and (b) in Fig. 3a).

Fig. 5.
Fig. 5.

Dispersion of the core guided mode of a porous core fiber covered with a thin PVDF layer facing air analyte (see Fig. 2). Solid curves - PVDF layer thickness 30 µm, two different values of the air analyte refractive index n a =1, n a =1.01. Dashed curve - PVDF layer thickness 35 µm, n a =1.

Fig. 6.
Fig. 6.

Sensitivity of a porous-core fiber sensor featuring a 30 µm PVDF layer facing air analyte (blue line). Losses of a core guided mode versus wavelength (green lines) in the vicinity of a phase matching point with a plasmon for two values of the analyte refractive index n a =1, n a =1.01.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε PVDF ( ω ) = ε opt + ( ε dc ε opt ) ω TO 2 ω TO 2 ω 2 + i γ ω ,
S A ( λ ) [ RIU 1 ] = 1 P ( L , λ , n a ) P ( L , λ , n a + dn a ) P ( L , λ , n a ) dn a .
S A ( λ ) [ RIU 1 ] = 1 P ( L , λ , n a ) P ( L , λ , n a ) n a = 1 α ( λ , n a ) α ( λ , n a ) n a .

Metrics