Abstract

Recent work demonstrated light transmission through deep subwavelength slits or coupling light into waveguides with deep subwavelength dimension only in one direction. In this paper, we propose an approach to squeeze light (λ=1550 nm) from a dielectric waveguide into a deep subwavelength spot. Vertical confinement is achieved by efficiently coupling light from a dielectric waveguide into a 20-nm metal-dielectric-metal plasmonic waveguide. The horizontal dimension of the plasmonic waveguide is then tapered into 20 nm. Numerical simulation shows that light fed from a dielectric waveguide can be squeezed into a 21nm-by-24nm spot with efficiency 62%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
    [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
    [CrossRef]
  3. P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006).
    [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
    [CrossRef]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  6. H. J. Lezec,  et al., "Beaming Light from a Subwavelength Aperture," Science 297, 820 (2002).
    [CrossRef] [PubMed]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  8. J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
    [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
    [CrossRef] [PubMed]
  10. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  11. E. Verhagen, A. Polman, and L. (K.) Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45 (2008).
    [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211 (2007).
    [CrossRef] [PubMed]
  13. P. Ginzburg, and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Opt. Express 15, 6762, (2007).
    [CrossRef] [PubMed]
  14. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  15. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
    [CrossRef]
  16. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972).
    [CrossRef]
  18. FDTD Solutions-Release 5.0, Lumerical Solutions, Inc, Vancouver, British Columbia, Canada.
  19. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
    [CrossRef]
  20. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006)
    [CrossRef] [PubMed]
  21. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359 (2005).
    [CrossRef]
  22. G. Veronis and S. Fan, "Modes of Subwavelength Plasmonic Slot Waveguides," J. Lightwave Technol. 25, 2511 (2007).
    [CrossRef]

2008

2007

2006

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006)
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006).
[CrossRef] [PubMed]

2005

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359 (2005).
[CrossRef]

2004

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
[CrossRef]

2002

H. J. Lezec,  et al., "Beaming Light from a Subwavelength Aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

1999

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972).
[CrossRef]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Arbel, D.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
[CrossRef]

Bourillot, E.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Chen, L.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
[CrossRef]

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Fan, S.

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Ginzburg, P.

Goudonnet, J. P.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Lacroute, Y.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec,  et al., "Beaming Light from a Subwavelength Aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Lipson, M.

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

O'Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Orenstein, M.

Ozbay, E.

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Pohll, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Polman, A.

Shakya, J.

Stockman, M. I.

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Verhagen, E.

Veronis, G.

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

J. Lightwave Technol.

Nano Lett.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano Lett. 5, 1399 (2005).
[CrossRef] [PubMed]

Nature (London)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667 (1998).
[CrossRef]

Nature Phys.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Phys. 2, 262 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys Rev B

P. B. Johnson and R. W. Christy, "Optical Constants of Noble metals," Phys Rev B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett.

J. R.  Krenn, A.  Dereux, J. C.  Weeber, E.  Bourillot, Y.  Lacroute, and J. P.  Goudonnet, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Science

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl1, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

H. J. Lezec,  et al., "Beaming Light from a Subwavelength Aperture," Science 297, 820 (2002).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohll, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Other

FDTD Solutions-Release 5.0, Lumerical Solutions, Inc, Vancouver, British Columbia, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of the coupler and nanotaper.

Fig. 2.
Fig. 2.

Simulation of light coupling from a dielectric waveguide into the MDM plasmonic taper: (a) the Sx distribution in the horizontal plane; (b) the Sx in the vertical plane.

Fig. 3.
Fig. 3.

The x-component of power flow (Px) along the x-axis.

Fig. 4.
Fig. 4.

The spot size at different locations along the x-axis.

Fig. 5.
Fig. 5.

(a). The distribution of electric field amplitude |E(r)| at the plane z=0. (b) The electric field amplitude |E(r)| at the central axis (y=0; z=0) along the propagation direction.

Fig. 6.
Fig. 6.

(a). The effective index and loss for the 20 nm thick MDM plasmonic waveguide with different widths. (b) The overall efficiency for tapers with different lengths.

Metrics