A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: A non-linear optimization approach,” in Proc. SPIE, 6154, 1159–1172 (San Jose, CA, 2006).

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” in Proc. SPIE, 5377, 1–20 (2004).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13 (1996).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” in Proc. SPIE (Taiwan, 2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A25 (2008).

[CrossRef]

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” in Proc. SPIE (San Jose, CA, 2008).

[CrossRef]

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, United Kingdom, 1999).

S. A. Campbell, The science and engineering of microelectronic fabrication, 2nd ed. (Publishing House of Electronics Industry, Beijing, China, 2003).

N. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,” Ph.D. thesis, University of California at Berkeley (1998).

N. Cobb and A. Zakhor, “Fast sparse aerial image calculation for OPC,” in BACUS Symposium on Photomask Technology, Proc. SPIE, 2440, 313–327 (1995).

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” in Proc. SPIE (San Jose, CA, 2008).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” in Proc. SPIE (Taiwan, 2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A25 (2008).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: A non-linear optimization approach,” in Proc. SPIE, 6154, 1159–1172 (San Jose, CA, 2006).

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: A non-linear optimization approach,” in Proc. SPIE, 6154, 1159–1172 (San Jose, CA, 2006).

B. E. A. Saleh and M. Rabbani, “Simulation of partially coherent imagery in the space and frequency domains and by modal expansion,” Appl. Opt.21 (1982).

[CrossRef]
[PubMed]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13 (1996).

[CrossRef]

B. E. A. Saleh and M. Rabbani, “Simulation of partially coherent imagery in the space and frequency domains and by modal expansion,” Appl. Opt.21 (1982).

[CrossRef]
[PubMed]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13 (1996).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” in Proc. SPIE, 5377, 1–20 (2004).

[CrossRef]

F. Schellenberg, Resolution enhancement techniques in optical lithography (SPIE Press, 2004).

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).

[CrossRef]

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).

[CrossRef]

C. Vogel, Computational methods for inverse problems (SIAM Press, 2002).

[CrossRef]

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (John Wiley and Sons, New York, 1995).

E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun.38 (1981).

[CrossRef]

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, United Kingdom, 1999).

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

A. K. Wong, Resolution enhancement techniques, 1 (SPIE Press, 2001).

[CrossRef]

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13 (1996).

[CrossRef]

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

N. Cobb and A. Zakhor, “Fast sparse aerial image calculation for OPC,” in BACUS Symposium on Photomask Technology, Proc. SPIE, 2440, 313–327 (1995).

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651–665 (2001).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography - An inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, Optical Microlithography,” in Proc. SPIE, 5377, 1–20 (2004).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: A non-linear optimization approach,” in Proc. SPIE, 6154, 1159–1172 (San Jose, CA, 2006).

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15,066–15,079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” in Proc. SPIE (San Jose, CA, 2007).

E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun.38 (1981).

[CrossRef]

P. S. Davids and S. B. Bollepalli, “Generalized inverse problem for partially coherent projection lithography,” in Proc. SPIE (San Jose, CA, 2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” in Proc. SPIE (Taiwan, 2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask opitimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A25 (2008).

[CrossRef]

N. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,” Ph.D. thesis, University of California at Berkeley (1998).

J. Zhang, W. Xiong, M. Tsai, Y. Wang, and Z. Yu, “Efficient mask design for inverse lithography technology based on 2D discrete cosine transformation (DCT),” in Simulation of Semiconductor Processes and Devices, 12 (2007).

[CrossRef]

B. E. A. Saleh and M. Rabbani, “Simulation of partially coherent imagery in the space and frequency domains and by modal expansion,” Appl. Opt.21 (1982).

[CrossRef]
[PubMed]

M. Born and E. Wolfe, Principles of optics (Cambridge University Press, United Kingdom, 1999).

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (John Wiley and Sons, New York, 1995).

N. Cobb and A. Zakhor, “Fast sparse aerial image calculation for OPC,” in BACUS Symposium on Photomask Technology, Proc. SPIE, 2440, 313–327 (1995).

C. Vogel, Computational methods for inverse problems (SIAM Press, 2002).

[CrossRef]

F. Schellenberg, Resolution enhancement techniques in optical lithography (SPIE Press, 2004).

A. K. Wong, Resolution enhancement techniques, 1 (SPIE Press, 2001).

[CrossRef]

S. A. Campbell, The science and engineering of microelectronic fabrication, 2nd ed. (Publishing House of Electronics Industry, Beijing, China, 2003).