Abstract

Light refraction at the planar boundary of dielectric media prevents light propagation in the higher refractive index medium at angles beyond the critical value. This limitation is lifted when the evanescent wave is excited at the lower refractive index side of the interface. In this work we quantify polarization and angle dependence of surface-enhanced Raman scattering (SERS) intensity beyond the critical angle. Specifically, Raman spectra of thiocyanate molecules adsorbed on clustered silver nanoparticles at the water-glass interface were acquired using evanescent excitation and detection. Detected SERS signal polarization and scattering angle dependence are shown to be in agreement with a simple model based on excitation and radiation of a classical dipole near a lossless interface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, “Allowed and forbidden light in near-field optics,” J. Opt. Soc. Am. A 14, 91–114 (1997).
    [Crossref]
  2. C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. A 62, 479–486 (1971).
  3. A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
    [Crossref]
  4. H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
    [Crossref]
  5. T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
    [Crossref]
  6. T. Inoue and H. Hory, “Quantization of evanescent electromagnetic waves based on detector modes,” Phys. Rev. A 63, 063805, (2001).
    [Crossref]
  7. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
    [Crossref]
  8. G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
    [Crossref]
  9. M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass-air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
    [Crossref]
  10. M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
    [Crossref]
  11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  12. G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
    [Crossref]
  13. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
    [Crossref]
  14. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [Crossref]
  15. E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
    [Crossref]
  16. H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).
  17. J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
    [Crossref]
  18. S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
    [Crossref] [PubMed]
  19. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
    [Crossref]
  20. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
    [Crossref] [PubMed]
  21. E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
    [Crossref] [PubMed]

2008 (1)

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

2007 (1)

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

2006 (5)

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[Crossref]

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[Crossref]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
[Crossref] [PubMed]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
[Crossref] [PubMed]

2005 (1)

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

2003 (2)

M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass-air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
[Crossref]

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

2002 (1)

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

2001 (1)

T. Inoue and H. Hory, “Quantization of evanescent electromagnetic waves based on detector modes,” Phys. Rev. A 63, 063805, (2001).
[Crossref]

2000 (2)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
[Crossref]

1997 (2)

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

L. Novotny, “Allowed and forbidden light in near-field optics,” J. Opt. Soc. Am. A 14, 91–114 (1997).
[Crossref]

1993 (1)

1987 (1)

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

1977 (1)

A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
[Crossref]

1971 (1)

C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. A 62, 479–486 (1971).

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Arakawa, E. T.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

Attygalle, A.

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

Bise, R.

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Blackie, E.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

Bölger, B.

A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
[Crossref]

Burgmans, A. L. J.

A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
[Crossref]

Cann, P. S.

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

Carniglia, C. K.

C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. A 62, 479–486 (1971).

Choi, H. H.

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

Christodoulatos, C.

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Cui, H-L.

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Drexhage, K. H.

C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. A 62, 479–486 (1971).

Du, H.

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Erol, M.

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[Crossref]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
[Crossref] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
[Crossref] [PubMed]

Ferrell, T. L.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

Goudonnet, J. P.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

Hori, H.

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Hory, H.

T. Inoue and H. Hory, “Quantization of evanescent electromagnetic waves based on detector modes,” Phys. Rev. A 63, 063805, (2001).
[Crossref]

Inagaki, T.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

Inoue, T.

T. Inoue and H. Hory, “Quantization of evanescent electromagnetic waves based on detector modes,” Phys. Rev. A 63, 063805, (2001).
[Crossref]

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Inoue, Y.

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Iwata, H.

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Jhe, W.

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

Jory, M. J.

M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass-air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
[Crossref]

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Ketterson, J. B.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[Crossref]

Kim, H. J.

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[Crossref]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
[Crossref] [PubMed]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
[Crossref] [PubMed]

Lee, C.-W.

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

Luan, L.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[Crossref]

Mandel, L.

C. K. Carniglia, L. Mandel, and K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. A 62, 479–486 (1971).

Matsudo, T.

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Mertz, J.

Meyer, M.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
[Crossref] [PubMed]

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Noh, J.

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

Novotny, L.

Perkins, E. A.

M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass-air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
[Crossref]

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

Sakurai, T.

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

Sambles, J. R.

M. J. Jory, E. A. Perkins, and J. R. Sambles, “Light scattering by microscopic spheres behind a glass-air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
[Crossref]

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

Schatz, G. C.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
[Crossref]

Schuurmans, M. F. H.

A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
[Crossref]

Sievert, P. R.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[Crossref]

Sukhishvili, S.

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

Sukhisvili, S. A.

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Tan, S.

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

Van Duyne, R. P.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
[Crossref]

Videen, G.

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Young, M. A.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. J. Jory, P. S. Cann, J. R. Sambles, and E. A. Perkins, “Surface-plasmon-enhanced light scattering from microscopic spheres,” Appl. Phys. Lett. 83, 3006–3008 (2003).
[Crossref]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[Crossref]

J. Chem. Phys. (1)

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single SERS hotspot and its relation to single molecule detection,” J. Chem. Phys. 125, 204701 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique,” J. Phys. Chem. B 110, 1944–1948 (2006).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot-spot,” J. Raman Spectrosc. 39, 1127–1134 (2008).
[Crossref]

Langmuir (1)

S. Tan, M. Erol, A. Attygalle, H. Du, and S. Sukhishvili, “Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions,” Langmuir 23, 9836–9843 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[Crossref]

NSF Nanoscale Sci. and Eng. Grantees Conf. (1)

H. Du, R. Bise, C. Christodoulatos, H-L. Cui, and S. A. Sukhisvili, “Photonic Crystal Fibers with Nanoscale Functionalized Air Holes as Robust Chemical and Biological Sensors,” NSF Nanoscale Sci. and Eng. Grantees Conf.0404002 (2005).

Phys. Rev. A (4)

A. L. J. Burgmans, M. F. H. Schuurmans, and B. Bölger, “Transient behavior of optically excited vapor atoms near a solid interface as observed in evanescent wave emission,” Phys. Rev. A 16, 2002–2007 (1977).
[Crossref]

H. H. Choi, H. J. Kim, J. Noh, C.-W. Lee, and W. Jhe, “Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave,” Phys. Rev. A 66, 053803 (2002).
[Crossref]

T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, “Direct detection of evanescent electromagnetic waves at a planar dielectric surface by laser atomic spectroscopy,” Phys. Rev. A 55, 2406– 2412 (1997).
[Crossref]

T. Inoue and H. Hory, “Quantization of evanescent electromagnetic waves based on detector modes,” Phys. Rev. A 63, 063805, (2001).
[Crossref]

Phys. Rev. B (1)

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. L. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B 36, 917–921 (1987).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Top. Appl. Phys. (1)

G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–46 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of experimental setup: (1) right angle glass prism, (2) glass cylinder glued on top of the prism, (3) rotating polarizer following the laser, (4) rotating polarizer preceding the spectrometer.

Fig. 2.
Fig. 2.

SEM images of clustered silver nanoparticles deposited on silicon substrate following the surface modification procedure described in the text. Images are shown for the same substrate at different magnification.

Fig. 3.
Fig. 3.

SERS spectra of SCN¯ molecules adsorbed on nanoparticle Ag clusters at water-glass interface for different scattering angles in the range from 74° (top spectrum) to 81° (bottom spectrum). Both excitation and detection were for S-polarized light. Exposure time was 2 min. Peaks below 1300 cm-1 are from borosilicate glass.

Fig. 4.
Fig. 4.

Schematic of scattering angle dependent geometrical corrections for the right angle prism geometry: (A) partial light reflection, (B) limited sampled area, (C) finite collection angle; see text for more details.

Fig. 5.
Fig. 5.

Angular dependence of SERS signal from SCN¯ molecules adsorbed on nanoparticle Ag clusters at water-glass interface beyond the critical angle for the circularly polarized evanescent excitation. Error bars represent standard deviation from three independent runs.

Fig. 6.
Fig. 6.

Angular dependences of SERS signal from SCN¯ molecules adsorbed on nanoparticle Ag clusters at water-glass interface beyond the critical angle for S- and P-polarized evanescent excitation and detection, experimental data (symbols) and theoretical fit (lines).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R S = ( n G cos α G cos α A n G cos α G + cos α A ) 2 , R P = ( cos α G n G cos α A cos α G + n G cos α A ) 2 ,
D D = D 0 cos α G cos θ cos α A ,
φ G = sin 1 ( sin ( α A + φ A 2 ) n G ) sin 1 ( sin ( α A φ A 2 ) n G ) .
E S = E y S e y exp ( d 2 L ) and E P = ( E x P e x + E z P e z ) exp ( d 2 L ) ,
E y S ( θ ) = t S ( θ ) , E x P ( θ ) = [ 2 t P ( θ ) ] cos θ , E z P ( θ ) = ( n G 2 n W 2 ) t P ( θ ) sin θ ,
I ED = F e HS · E E ( λ I , θ I ) 2 e HS · E D ( λ R , θ R ) 2 ,
I SS = I ( 3 M I S M I S ) , I SP = I ( M I S M R P ) , I PS = I ( M I P M R S ) ,
I PP = I ( 2 M I P M R P + 2 M I P M R P + M I P M R P + M I P X M R P X )
I = ( F 15 ) exp ( d L IR ) , L IR = 2 [ L ( λ I , θ I ) 1 + L ( λ R , θ R ) 1 ] 1
M I S = E y S ( λ I , θ I ) 2 , M I P = E x P ( λ I , θ I ) 2 , M I P = E z P ( λ I , θ I ) 2 ,
M I P = M I P + M I P , M I P X = 2 Re { E x P ( λ I , θ I ) ( E z P ( λ I , θ I ) ) * } ,

Metrics