Abstract

A method is reported for improving the spatial resolution and engineering the stop gaps of the inorganic-organic 3D woodpile photonic crystals (PhCs). The approach is based on the two-photon polymerization (2PP) of an inorganic-organic hybrid material and a post-thermal treatment (PTT) process. The effects of PTT on polymerized 1D, 2D and 3D structures have been characterized. Ultimately, the feature size of the suspended rods has been reduced to ~33 nm and the spatial resolution of inorganic-organic 3D woodpile PhCs has been improved from ~150 nm to ~86 nm. The approach is also demonstrated as a powerful tool to engineer the stop gaps of 3D PhCs. In particular, a combination of PTT and the threshold fabrication technique leads to the stop gap of a 3D woodpile PhC that can be tuned over a large wavelength range of ~318 nm from the near-infrared to visible region.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  3. S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
    [CrossRef]
  4. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1825 (2002).
    [CrossRef]
  5. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]
  6. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
    [CrossRef]
  7. L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
    [CrossRef]
  8. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
    [CrossRef]
  9. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  10. J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
    [CrossRef] [PubMed]
  11. N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
  12. B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
    [CrossRef]
  13. K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
    [CrossRef]
  14. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
    [CrossRef]
  15. D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
    [CrossRef]
  16. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
    [CrossRef]
  17. W.  Haske, V. W.  Chen, J. M.  Hales, W. T.  Dong, S.  Barlow, S. R.  Marder, and J. W.  Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express  15, 3426-3436 (2007).
    [CrossRef] [PubMed]
  18. Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
    [CrossRef]
  19. J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
    [CrossRef]
  20. J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
    [CrossRef] [PubMed]
  21. J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
    [CrossRef]
  22. J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
    [CrossRef]
  23. R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
    [CrossRef]
  24. R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
    [CrossRef]
  25. B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
    [CrossRef]
  26. T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
    [CrossRef]
  27. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
    [CrossRef] [PubMed]

2008 (2)

Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

2007 (6)

W.  Haske, V. W.  Chen, J. M.  Hales, W. T.  Dong, S.  Barlow, S. R.  Marder, and J. W.  Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express  15, 3426-3436 (2007).
[CrossRef] [PubMed]

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

2006 (7)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
[CrossRef]

J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
[CrossRef]

J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
[CrossRef] [PubMed]

J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
[CrossRef] [PubMed]

2005 (5)

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

2004 (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (3)

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

1997 (1)

Barlow, S.

Buestrich, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Bullen, C.

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Chen, V. W.

Chichkov, B. N.

Cronauer, C.

Dannberg, P.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Domann, G.

Dong, W. T.

Dong, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Duan, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Egbert, A.

Ehsan, A. A.

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

Freymann, G. V.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Fröhlich, L.

Gong, Q.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Gu, M.

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
[CrossRef] [PubMed]

J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
[CrossRef] [PubMed]

S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
[CrossRef]

J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
[CrossRef]

M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1825 (2002).
[CrossRef]

Hales, J. M.

Haske, W.

Hermatschweiler, M.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Houbertz, R.

Jia, B.

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
[CrossRef] [PubMed]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Jun, Y.

Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Kahlenberg, F.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Kawata, S.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Kerle, T.

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

Kim, H. -C.

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

Lange, B.

B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
[CrossRef]

Li, J.

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
[CrossRef] [PubMed]

Li, Y.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Lin, Z.

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

Marder, S. R.

Maruo, S.

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Mohamed, R.

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

Müller-Fiedler, R.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Nagpal, P.

Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
[CrossRef]

Nakamura, O.

Nguyen, L. H.

L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
[CrossRef]

Norris, D. J.

Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
[CrossRef]

Ostendorf, A.

Ozin, G. A.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Perez-Willard, F.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Perry, J. W.

Popall, M.

Qi, F.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Razali, N.

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

Rösch, O.

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Russell, T. P.

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

Schulz, J.

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Serbin, J.

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
[CrossRef]

J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

Shaari, S.

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Straub, M.

L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
[CrossRef]

M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27, 1824-1825 (2002).
[CrossRef]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Sun, H.-B.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

Takada, K.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tan, D.

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tetreault, N.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

von Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wagner, J.

B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
[CrossRef]

Wegener, M.

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wegst, U. G. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Wu, S.

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
[CrossRef]

Yang, H.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Zentel, R.

B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
[CrossRef]

Zhou, G.

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

L. H. Nguyen, M. Straub, and M. Gu, "Acrylate-based photopolymer for two-photon microfabrication and photonic applications," Adv. Funct. Mater. 15, 209-216 (2005).
[CrossRef]

Adv. Mater. (6)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

N. Tetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Y. Jun, P. Nagpal, and D. J. Norris, "Thermally stable organic-Inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing," Adv. Mater. 20, 606-610 (2008).
[CrossRef]

J. Serbin and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals," Adv. Mater. 18, 221-224 (2006).
[CrossRef]

J. Li, B. Jia, G. Zhou, J. Serbin, C. Bullen, and M. Gu, "Spectral redistribution in spontaneous emission from quantum-dot-infiltrated 3D woodpile photonic crystals for telecommunications," Adv. Mater. 19, 3276-3280 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

J. Li, B. Jia, G. Zhou, and M. Gu, "Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal," Appl. Phys. Lett. 91, 254101 (2007).
[CrossRef]

D. Tan, Y.  Li, F.  Qi, H.  Yang, Q.  Gong, X.  Dong, and X.  Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, "Mechanical properties and tuning of three-dimensional polymeric photonic crystals," Appl. Phys. Lett.  91, 241904 (2007).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 1 (2005).
[CrossRef]

J. Appl. Phys. (1)

B. Jia, S. Wu, J. Li, and M. Gu, "Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process," J. Appl. Phys. 102, 096102 (2007).
[CrossRef]

J. Photochem. Photobiol., A (1)

S. Wu, J. Serbin, and M. Gu, "Two-photon polymerisation for three-dimensional micro-fabrication," J. Photochem. Photobiol., A 181, 1-11 (2006).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

R. Buestrich, F. Kahlenberg, M. Popall, P. Dannberg, R. Müller-Fiedler, and O. Rösch, "ORMOCER®s for optical interconnection technology," J. Sol-Gel Sci. Technol. 20, 181-186 (2001).
[CrossRef]

Macromol. (1)

T. Kerle, Z. Lin, H. -C. Kim, and T. P. Russell, "Mobility of polymers at the air/polymer interface," Macromol. 34, 3484-3492 (2001).
[CrossRef]

Macromol. Rapid Commun. (1)

B. Lange, J. Wagner, and R. Zentel, "Fabrication of robust high-quality ORMOCER® inverse opals," Macromol. Rapid Commun. 27, 1746-1751 (2006).
[CrossRef]

Nanotechnology (2)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-849 (2005).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Sci. Technol. Adv. Mater. (1)

R. Mohamed, N. Razali, A. A. Ehsan, and S. Shaari, "Characterisation and process optimisation of photosensitive acrylates for photonics applications," Sci. Technol. Adv. Mater. 6, 375-382 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Absorption spectra of the polymerized films upon heating at temperature 300°C for different heating time. Spectra are normalized and translated for better view. The schematic on the right side is based on the observed changes in absorbance of organic functional groups.

Fig. 2.
Fig. 2.

(a, b) AFM images of the top surface of a laser-generated thin film (a) before and (b) after 3-h heating at 300°C.

Fig. 3.
Fig. 3.

(a) Schematic of truncated rods on cover glass (side view). (b) and (c) AFM images of the rods before and after 18-h PTT. (d) Corresponding cross-sections of the rods taken from (b) and (c). (e) Height ratio H/H0 as a function of the PTT time for rods with different H0. The data beyond 3 h are fitted with the exponential decay curve. The fitted decay speeds are 0.162, 0.199 and 0.223 h-1 for rods with H0 of 193, 287 and 361 nm. Inset: Cross-sections of rods before and after 36-h PTT.

Fig. 4.
Fig. 4.

(a) and (b) SEM images of rods suspended between two supporters before and after 3-h PTT. (c) and (d) Rod width as a function of the fabrication speed (V) and power (P) before and after 3-h PTT. (e) SEM image of suspended rods with a length of ~5.5 µm after 3-h PTT. (f) and (g) SEM images of suspended rods with the minimum feature size survived before and after 3-h PTT.

Fig. 5.
Fig. 5.

(a) and (b) SEM images of 3D woodpile PhCs after PTT for 3 and 20 h, respectively. (c) Measured transmission spectra of a 32-layer woodpile PhC in the stacking direction before and after 3-h PTT. The four areas noted by dashed circles indicate the increased transmission at shorter wavelengths. The two vertical arrows point out the “defect” within the stop gap, which disappears after PTT. (d) Baseline corrected transmission spectra of a 32-layer woodpile PhC at different heating time (from right to left): 0, 3, 6, 9, 15, 38 h. (e) Relationship between Δλcc0 and the heating time. Experimental data beyond 3 h are fitted well with the exponential decay model with a decay speed of 0.117 h-1. Inset: Microscope image of the PhC after PTT. The outer dashed square and the inner solid square mark the woodpile before and after heating for 38 h, respectively.

Fig. 6.
Fig. 6.

(a) Measured transmission spectra of a 20-layer woodpile PhC with a rod spacing of 700 nm. The centers of the stop gaps before and after 21-h heating are located at wavelengths 1007 and 746 nm, respectively. (b) and (c) Measured transmission spectra of 20-layer PhCs with rod spacings of 800 and 700 nm after PTT for 21 and 6 h, respectively. The centers of the stop gaps are located at wavelengths 831 and 723 nm, respectively. Inset of (c): SEM image of the PhC in (c). The width of the rod is reduced to ~86 nm.

Metrics