Abstract

This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Review: Photonic Crystal Fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
    [Crossref]
  3. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
    [Crossref] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured Optical Fiber Devices,” Opt. Express 9, 698–713 (2001).
    [Crossref] [PubMed]
  5. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
    [Crossref]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
    [Crossref]
  7. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).
  8. S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
    [Crossref]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
    [Crossref] [PubMed]
  10. M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
    [Crossref]
  11. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
    [Crossref] [PubMed]
  12. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [Crossref]
  13. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
    [Crossref] [PubMed]
  14. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
    [Crossref]
  15. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
    [Crossref] [PubMed]
  16. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
    [Crossref] [PubMed]
  17. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
    [Crossref]
  18. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
    [Crossref]
  19. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
    [Crossref]
  20. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24, 3427–3432 (2006).
    [Crossref]
  21. P. Agrawal, Fiber-Optic Communication Systems, (John Wiley & Sons, New York, 1997).
  22. H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
    [Crossref]
  23. J.R. Qian and H.F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electron. Lett.,  34, 1132–1133, (2002).
    [Crossref]
  24. P.P. Sahu, “Thermally tunable EDFA gain equalizer using point symmetric cascaded Mach-Zehnder coupler,” Opt. Commun.,  281, 573–579, (2008).
    [Crossref]
  25. M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
    [Crossref]
  26. J. Li, S. Gauza, and S.T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express,  12, 2002–2010, (2004).
    [Crossref] [PubMed]

2008 (2)

2007 (3)

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

2006 (3)

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24, 3427–3432 (2006).
[Crossref]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

2005 (2)

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

2004 (4)

2003 (2)

2002 (4)

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

J.R. Qian and H.F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electron. Lett.,  34, 1132–1133, (2002).
[Crossref]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

2001 (1)

1998 (1)

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
[Crossref]

1996 (1)

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

Agrawal, P.

P. Agrawal, Fiber-Optic Communication Systems, (John Wiley & Sons, New York, 1997).

Ahmed, S.A.

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

Ali, M. A.

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

Alkeskjold, T. T.

Anawati, A.

Bassi, P.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

Bjarklev, A.

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[Crossref]

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[Crossref] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[Crossref] [PubMed]

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
[Crossref]

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
[Crossref]

Borelli, E.

Broeng, J.

Chen, H.F.

J.R. Qian and H.F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electron. Lett.,  34, 1132–1133, (2002).
[Crossref]

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

de Sterke, C. M.

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Dunn, S. C.

Eggleton, B. J.

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
[Crossref] [PubMed]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured Optical Fiber Devices,” Opt. Express 9, 698–713 (2001).
[Crossref] [PubMed]

Elrefaie, A. F.

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

Engan, H. E.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Gauza, S.

J. Li, S. Gauza, and S.T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express,  12, 2002–2010, (2004).
[Crossref] [PubMed]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

Haakestad, M.W.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Hale, A.

Hermann, D.

Hermann, D. S.

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

Igarashi, J.

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

Kamoto, K.

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured Optical Fiber Devices,” Opt. Express 9, 698–713 (2001).
[Crossref] [PubMed]

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

Kriezis, E. E.

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Li, J.

Litchinitser, N. M.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

Marder, S.

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
[Crossref]

McPhedran, R. C.

Mouri, N.

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Nielsen, M.

Nielsen, M. D.

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Noordegraaf, D.

Nowecka, K.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Qian, J.R.

J.R. Qian and H.F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electron. Lett.,  34, 1132–1133, (2002).
[Crossref]

Riishede, J.

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

Rindorf, L.

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, “Review: Photonic Crystal Fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Sahu, P.P.

P.P. Sahu, “Thermally tunable EDFA gain equalizer using point symmetric cascaded Mach-Zehnder coupler,” Opt. Commun.,  281, 573–579, (2008).
[Crossref]

Sasakij, Y.

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Scolari, L.

Steinvurzel, P. E.

Tartarini, G.

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

Tsiboukis, T. D.

Wagner, R.E.

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

Westbrook, P. S.

White, T. P.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured Optical Fiber Devices,” Opt. Express 9, 698–713 (2001).
[Crossref] [PubMed]

Wojcik, J.

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Wu, S. T.

D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
[Crossref] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[Crossref] [PubMed]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
[Crossref]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

Wu, S.T.

Yokota, H.

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Zhang, Q. T.

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
[Crossref]

Zografopoulos, D. C.

Appl. Phys. Lett. (1)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Electron. Lett. (2)

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006).
[Crossref]

J.R. Qian and H.F. Chen, “Gain flattening fibre filters using phase-shifted long period fibre gratings,” Electron. Lett.,  34, 1132–1133, (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M.W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[Crossref]

J. Lightwave Technol. (2)

M. A. Ali, A. F. Elrefaie, R.E. Wagner, and S.A. Ahmed “Detailed Comparison of the Overall Performance of 980 and 1480 nm Pumped EDFA Cascades in WDM Multiple-Access Lightwave Networks,” J. Lightwave Technol.,  14, 1436–1448, (1996).
[Crossref]

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24, 3427–3432 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634–7638 (2004).

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37, L1254–L1256 (1998).
[Crossref]

Meas. Sci. Technol. (1)

T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18, 3061–3069 (2007).
[Crossref]

Opt. Commun. (2)

P.P. Sahu, “Thermally tunable EDFA gain equalizer using point symmetric cascaded Mach-Zehnder coupler,” Opt. Commun.,  281, 573–579, (2008).
[Crossref]

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204, 179–184 (2002).
[Crossref]

Opt. Express (7)

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004).
[Crossref] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured Optical Fiber Devices,” Opt. Express 9, 698–713 (2001).
[Crossref] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[Crossref] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[Crossref] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[Crossref] [PubMed]

J. Li, S. Gauza, and S.T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express,  12, 2002–2010, (2004).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007).
[Crossref]

Opt. Rev. (1)

H. Yokota, K. Kamoto, J. Igarashi, N. Mouri, and Y. Sasakij, “An ASE Reduction Filter Using Cascaded Optical Fiber Grating Couplers in EDFA Repeater,” Opt. Rev.,  9, 9–12 (2002).
[Crossref]

Optical Fiber Communication Conference (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002).
[Crossref]

Opto-Electron. Rev. (1)

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics,” Opto-Electron. Rev. 14, 329–334, (2006).
[Crossref]

Science (1)

P. St. J. Russell, “Review: Photonic Crystal Fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, Dordrecht, 2003).
[Crossref]

P. Agrawal, Fiber-Optic Communication Systems, (John Wiley & Sons, New York, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical power spectrum after 10 spans with and without the LCPCF filter. Without filtering, a large ASE peak is created at 1530 nm and the signals drown in noise.

Fig. 2.
Fig. 2.

Transfer curve (filter shape) of the LCPCF filter for three different temperatures. The length of the PCF is 50 cm and the LC infiltrated region is 10 mm.

Fig. 3.
Fig. 3.

Experimental loop setup used to demonstrate LCPCF noise filtering. The bottom enlargement illustrates the physical layout of the LCPCF filter.

Fig. 4.
Fig. 4.

Results of OSNR vs. span-loss investigation without filtering and with the LCPCF filter. The number of transmitted spans was fixed at 10.

Fig. 5.
Fig. 5.

Results of OSNR vs. number-of-spans investigation without filtering and with the LCPCF filter. Each span here is of fixed length 80 km.

Metrics