Abstract

A femtosecond laser with a 1 kHz repetition rate and two different polarization states was used to fabricate low-loss waveguides in fused silica. Investigations of chemically-mechanically polished waveguide regions using near-field scanning optical microscopy revealed the presence of modifications outside the glass regions directly exposed to a circularly polarized writing laser. These waveguides also exhibited refractive index contrast up to twice as large as that of waveguides written with linearly polarized radiation. The observed differences in refractive index were shown by Raman spectroscopy to correlate to an increased concentration of 3-member silicon-oxygen ring structures. We propose that the observed differences in material properties are due to the polarization dependence of photo-ionization rates in fused silica.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing Waveguides in Glass with a Femtosecond Laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared Photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  3. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  4. A. M. Streltsov and N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  5. M. Will, S. Nolte, B. N. Chichkov, and A. Tuennermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 41, 4360-4364 (2002).
    [CrossRef] [PubMed]
  6. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006).
    [CrossRef] [PubMed]
  7. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
    [CrossRef]
  8. M. Ams, G. D. Marshall, D. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005).
    [CrossRef] [PubMed]
  9. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748-750 (2004).
    [CrossRef] [PubMed]
  10. R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
    [CrossRef]
  11. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, "Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating," Opt. Lett. 33, 956-958 (2008).
    [CrossRef] [PubMed]
  12. R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
    [CrossRef]
  13. L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
    [CrossRef]
  14. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
    [CrossRef]
  15. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
    [CrossRef] [PubMed]
  16. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  17. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
    [CrossRef] [PubMed]
  18. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006).
    [CrossRef] [PubMed]
  19. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006).
    [CrossRef] [PubMed]
  20. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  21. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
    [CrossRef]
  22. A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998).
    [CrossRef]
  23. A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983).
    [CrossRef]
  24. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
    [CrossRef]
  25. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
    [CrossRef]
  26. D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
    [CrossRef]
  27. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides.," Opt. Express 16, 9443-9458 (2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

2006 (4)

2005 (4)

2004 (2)

L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

2003 (3)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

2002 (3)

2001 (2)

1999 (2)

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared Photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

1998 (1)

A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

1996 (1)

1983 (1)

A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983).
[CrossRef]

Ams, M.

Ancona, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

Bhardwaj, V. R.

Blewett, I. J.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

Burghoff, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
[CrossRef] [PubMed]

Campell, S.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Car, R.

A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Cerullo, G.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Chen, W. J.

Chichkov, B. N.

Chong, T. C.

L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
[CrossRef]

Corkum, P. B.

Davis, K. M.

De Silvestri, S.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Dekker, P.

Eaton, S. M.

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Gaeta, A. L.

Galeener, F. L.

A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983).
[CrossRef]

Garcia, J. F.

Geissberger, A. E.

A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983).
[CrossRef]

Gong, Q.

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Gui, L.

L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
[CrossRef]

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

Herman, P. R.

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing Waveguides in Glass with a Femtosecond Laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

Ho, N.

Ho, S.

Homoelle, D.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Jha, A.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Kar, A. K.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Laporta, P.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Li, J.

Li, Y.

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Liu, D.

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Liu, M.

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Lopez, C.

Marangoni, M.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Marshall, G. D.

Mazur, E.

Miura, K.

Nejadmalayeri, A. H.

Ng, M. L.

Nolte, S.

Okuno, M.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Osellame, R.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Pasquarello, A.

A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Piper, J. A.

Polli, D.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Qiu, J. R.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Ramponi, R.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Rayner, D. M.

Reid, D. T.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Reynard, B.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Richardson, K.

Richardson, M.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Rivero, C.

Schaffer, C. B.

Schulte, A.

Shen, S.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Shimada, Y.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

Smith, C.

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Spence, D.

Streltsov, A. M.

Sugimoto, N.

Syono, Y.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Taccheo, S.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Taylor, R. S.

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

Thomson, R. R.

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

Tuennermann, A.

Vallee, R.

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Wielandy, S.

Will, M.

Willaime, C.

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Withford, M. J.

Xu, B.

L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
[CrossRef]

Yang, H.

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Zhang, H.

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

Zoubir, A.

Appl. Opt. (1)

Appl. Phys. A (1)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Appl. Phys. B (1)

D. Liu, Y. Li, M. Liu, H. Yang and Q. Gong, "The polarization-dependence of femtosecond damage threshold inside fused silica," Appl. Phys. B 91, 597-599 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

R. R. Thomson, S. Campell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, "Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses," Appl. Phys. Lett. 87, 121102 (2005).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tuennermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007).
[CrossRef]

Electron. Lett. (1)

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, "Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses," Electron. Lett. 38, 964-965 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Gui, B. Xu, and T. C. Chong, "Microstructure in lithium niobate by use of focused femtosecond laser pulses," IEEE Photon. Technol. Lett. 16, 1337-1379 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (10)

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, "Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating," Opt. Lett. 33, 956-958 (2008).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing Waveguides in Glass with a Femtosecond Laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared Photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006).
[CrossRef] [PubMed]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
[CrossRef] [PubMed]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tuennermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).
[CrossRef] [PubMed]

Phys. Chem. Miner. (1)

M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, "A Raman spectroscopic study of shock-wave densification of vitreous silica," Phys. Chem. Miner. 26, 304-311 (1999).
[CrossRef]

Phys. Rev. B (1)

A. E. Geissberger and F. L. Galeener, "Raman studies of vitreous SiO2 versus fictive temperature," Phys. Rev. B 28, 3266-3271 (1983).
[CrossRef]

Phys. Rev. Lett. (3)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, "Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization," Phys. Rev. Lett. 97, 237403 (2006).
[CrossRef]

A. Pasquarello and R. Car, "Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica," Phys. Rev. Lett. 80, 5145-5147 (1998).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Shear-force (above) image of the surface topology of the output facet of a waveguide written with circularly polarized radiation and 4.5 µJ pulse energy. The corresponding optical near-field (below) confirms the presence of waveguiding, the non-Gaussian output profile is due to the waveguide being highly multi-mode at 633 nm. The writing laser was directed along the Y-axis coming from the top of the image. Spots indicate points where Raman spectra were collected.

Fig. 2.
Fig. 2.

A typical Raman spectrum of fused silica, showing the ω1, D1 , D2 , ω3 and ω4 (TO) peaks at 440 cm-1, 490 cm-1, 605 cm-1, 800 cm-1 and 1060 cm-1 respectively.

Fig. 3.
Fig. 3.

Ratio of the D2 and ω3 peak intensities as a function of waveguide position for waveguides written with 4.5 µJ, circularly polarized and 4.5 µJ, linearly polarized radiation. The waveguide is centered at X=0 in both instances. Un-modified glass possessed a D23 ratio of 0.9±0.02.

Fig. 4.
Fig. 4.

Refractive index profile for a waveguide written with a pulse energy of 4.5 µJ and circularly polarized radiation. The writing laser propagates in the positive X direction.

Fig. 5.
Fig. 5.

Induced Refractive Index as a function of the peak irradiance of the writing laser.

Tables (1)

Tables Icon

Table 1. Laser-induced peak refractive index change for each set of writing conditions. The uncertainty in all cases is ±0.1×10-3.

Metrics