Abstract

We propose a lateral-tandem organic photovoltaic system consisting of a dispersive-focusing element and continuously-tuned, series-connected sub-cells. The proposed system overcomes the efficiency limitation of organic photovoltaic devices by spectral re-distribution of incoming solar photons and their delivery to the wavelength-matched, resonant sub-cells. By numerical simulations, we demonstrate that optical resonance in a microcavity sub-cell with a metal/organic multilayer/metal structure can be tuned over a broad spectrum by varying the thickness of the organic multilayer. We show that the power-conversion efficiency exceeding 18% can be obtained in a lateral-tandem system employing an ideal dispersive-focusing element and the microcavity sub-cells.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Dennler and N. S. Sariciftci, "Flexible conjugated polymer-based plastic solar cells: From basics to applications," Proc. IEEE 93, 1429-1439 (2005).
    [CrossRef]
  2. S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004).
    [CrossRef] [PubMed]
  3. T. Surek, "Crystal growth and materials research in photovoltaics: progress and challenges," J. Cryst. Growth 275, 292-304 (2005).
    [CrossRef]
  4. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
    [CrossRef] [PubMed]
  5. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
    [CrossRef]
  6. B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
    [CrossRef]
  7. M. Pope and C. E. Swenberg, Electronic processes in organic crystals (Oxford University Press, 1982).
  8. S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28-32 (2005).
    [CrossRef]
  9. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
    [CrossRef]
  10. J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
    [CrossRef]
  11. A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
    [CrossRef]
  12. A. G. Imenes and D. R. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review," Sol. Energy Mater. Sol. Cells 84, 19-69 (2004).
    [CrossRef]
  13. C. Kim, J.-Y. Lee, P. Peumans, and J. Kim, "Surface plasmon polariton assisted organic solar cells," Proceedings of NSTI-Nanotech 2008 1, 533-536 (2008).
  14. P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
    [CrossRef]
  15. J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
    [CrossRef]
  16. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, Inc., New York, 1985).
  17. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
    [CrossRef]
  18. R. W. Boyd, Radiometry and the detection of optical radiation (Wiley, New York, 1983).
  19. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
    [CrossRef]
  20. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
    [CrossRef] [PubMed]
  21. G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
    [CrossRef]
  22. C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
    [CrossRef]
  23. M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
    [CrossRef]
  24. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
    [CrossRef] [PubMed]

2008

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

2007

B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

2006

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

2005

T. Surek, "Crystal growth and materials research in photovoltaics: progress and challenges," J. Cryst. Growth 275, 292-304 (2005).
[CrossRef]

G. Dennler and N. S. Sariciftci, "Flexible conjugated polymer-based plastic solar cells: From basics to applications," Proc. IEEE 93, 1429-1439 (2005).
[CrossRef]

S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28-32 (2005).
[CrossRef]

2004

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004).
[CrossRef] [PubMed]

A. G. Imenes and D. R. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review," Sol. Energy Mater. Sol. Cells 84, 19-69 (2004).
[CrossRef]

2003

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

2002

A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
[CrossRef]

C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
[CrossRef]

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

2001

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
[CrossRef]

2000

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

1998

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Ameri, T.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

Babayan, Y.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Barnes, W. L.

P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
[CrossRef]

Bau, R.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Benziger, J. B.

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

Blanchet, G. B.

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

Brabec, C. J.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Brooks, J.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Bulle-Lieuwma, C.W. T.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Burk, D. P.

B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
[CrossRef]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Denk, P.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Dennler, G.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

G. Dennler and N. S. Sariciftci, "Flexible conjugated polymer-based plastic solar cells: From basics to applications," Proc. IEEE 93, 1429-1439 (2005).
[CrossRef]

Djurovich, P. I.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Feldmann, J.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Fincher, C. R.

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

Forberich, K.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

Forrest, S. R.

B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
[CrossRef]

S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28-32 (2005).
[CrossRef]

S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004).
[CrossRef] [PubMed]

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
[CrossRef]

C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
[CrossRef]

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

Friend, R. H.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Gao, F.

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

Gossenberger, H. F.

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

Hebner, T. R.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Heeger, A. J.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Hummelen, J. C.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Imenes, A. G.

A. G. Imenes and D. R. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review," Sol. Energy Mater. Sol. Cells 84, 19-69 (2004).
[CrossRef]

Inbasekaran, M.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Janssen, R. A. J.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Kawase, T.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Kim, C.

C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
[CrossRef]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Koeppe, R.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Koppe, M.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Lamansky, S.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Lee, K.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Lemmer, U.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Loo, Y.-L.

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

Loos, J.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Lu, M. H.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Lupton, J. M.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Marcy, D.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Mills, D. R.

A. G. Imenes and D. R. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review," Sol. Energy Mater. Sol. Cells 84, 19-69 (2004).
[CrossRef]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Mühlbacher, D.

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Müller, J. G.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

Peumans, P.

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

Rand, B. P.

B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
[CrossRef]

Rogers, J. A.

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

Sariciftci, N. S.

G. Dennler and N. S. Sariciftci, "Flexible conjugated polymer-based plastic solar cells: From basics to applications," Proc. IEEE 93, 1429-1439 (2005).
[CrossRef]

Scharber, M. C.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Scherf, U.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

Shimoda, T.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Shtein, M.

C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
[CrossRef]

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

Sieval, A. B.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Sirringhaus, H.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Sturm, J. C.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Surek, T.

T. Surek, "Crystal growth and materials research in photovoltaics: progress and challenges," J. Cryst. Growth 275, 292-304 (2005).
[CrossRef]

Thompson, M. E.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

Tsyba, I.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

van Duren, J. K. J.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Waldauf, C.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

Wasey, J. A. E.

P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
[CrossRef]

Woo, E. P.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Worthing, P. T.

P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
[CrossRef]

Wu, C. C.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

Wu, W.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
[CrossRef]

Yang, X.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Adv. Funct. Mater.

J. K. J. van Duren, X. Yang, J. Loos, C.W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, "Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance," Adv. Funct. Mater. 14, 425-434 (2004).
[CrossRef]

Adv. Mater.

J. M. Lupton, R. Koeppe, J. G. Müller, J. Feldmann, U. Scherf, and U. Lemmer, "Organic microcavity photodiodes," Adv. Mater. 15, 1471-1474 (2003).
[CrossRef]

M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, "Design rules for donors in bulk-heterojunction solar cells - towards 10% energy-conversion efficiency," Adv. Mater. 18, 789-794 (2006).
[CrossRef]

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, "Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency," Adv. Mater. 20, 579-583 (2008).
[CrossRef]

Appl. Phys. Lett.

A. Yakimov and S. R. Forrest, "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters," Appl. Phys. Lett. 80, 1667-1669 (2002).
[CrossRef]

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Appl. Phys. Lett. 72, 519-521 (1998).
[CrossRef]

G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, "Large area, high resolution, dry printing of conducting polymers for organic electronics," Appl. Phys. Lett. 82, 463-465 (2003).
[CrossRef]

C. Kim, M. Shtein, and S. R. Forrest, "Nanolithography based on patterned metal transfer and its application to organic electronic devices," Appl. Phys. Lett. 80, 4051-4053 (2002).
[CrossRef]

Inorg. Chem.

J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, "Synthesis and characterization of phosphorescent cyclometalated platinum complexes," Inorg. Chem. 41, 3055-3066 (2002).
[CrossRef] [PubMed]

J. Appl. Phys.

P. T. Worthing, J. A. E. Wasey, and W. L. Barnes, "Rate and efficiency of spontaneous emission in metal-clad microcavities," J. Appl. Phys. 89, 615-625 (2001).
[CrossRef]

M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, "Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition," J. Appl. Phys. 89, 1470-1476 (2001).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003).
[CrossRef]

J. Cryst. Growth

T. Surek, "Crystal growth and materials research in photovoltaics: progress and challenges," J. Cryst. Growth 275, 292-304 (2005).
[CrossRef]

MRS Bull.

S. R. Forrest, "The limits to organic photovoltaic cell efficiency," MRS Bull. 30, 28-32 (2005).
[CrossRef]

Nature

S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004).
[CrossRef] [PubMed]

Phys. Rev. B

B. P. Rand, D. P. Burk, and S. R. Forrest, "Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells," Phys. Rev. B 75, 115327 (2007).
[CrossRef]

Proc. IEEE

G. Dennler and N. S. Sariciftci, "Flexible conjugated polymer-based plastic solar cells: From basics to applications," Proc. IEEE 93, 1429-1439 (2005).
[CrossRef]

Science

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science 317, 222-225 (2007).
[CrossRef] [PubMed]

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, "High-resolution inkjet printing of all-polymer transistor circuits," Science 290, 2123-2126 (2000).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

A. G. Imenes and D. R. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review," Sol. Energy Mater. Sol. Cells 84, 19-69 (2004).
[CrossRef]

Other

C. Kim, J.-Y. Lee, P. Peumans, and J. Kim, "Surface plasmon polariton assisted organic solar cells," Proceedings of NSTI-Nanotech 2008 1, 533-536 (2008).

R. W. Boyd, Radiometry and the detection of optical radiation (Wiley, New York, 1983).

E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, Inc., New York, 1985).

M. Pope and C. E. Swenberg, Electronic processes in organic crystals (Oxford University Press, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of organic photovoltaic cell in lateral-tandem configuration employing planar microcavity sub-cells. Lateral-tandem cell (LTC) system consists of a one-dimensional periodic array of a unit-cell and a dispersive-focusing element (DFE) with a period W. The DFE, which is conceptually represented by a lens with a grating on its surface, spectrally separates incoming solar photons, as schematically shown by different colors on the LTC surface. Each unit cell is partitioned into series-connected sub-cells. The planar microcavity shown on the left consists of an organic multilayer of a thickness t located between two silver electrodes (gray), and the organic multilayer consists of a 10-nm-thick absorption layer (blue), and upper and lower transport layers (white). Continuous resonant matching between the sub-cells and incoming photons is achieved by varying t along the x-direction. Also shown on the right is how the series connection between adjacent sub-cells is implemented.

Fig. 2.
Fig. 2.

(a) External quantum efficiency as a function of photon wavelength and thickness of the organic multilayer. (b) Electric field profile corresponding to point A in (a). Vertical lines represent the boundaries between the layers, with the leftmost layer corresponding to the 150-nm-thick Ag electrode. E denotes the complex amplitude of the electric field when the amplitude of the incident plane-wave is E inc. Inset: steady-state exciton density (nexc ) in the absorption layer.

Fig. 3.
Fig. 3.

Performance analysis of the LTC employing microcavity resonant sub-cells. Top panel: the thickness of the organic multilayer that optimizes the external quantum efficiency throughout the LTC surface. Second panel: the optimized external quantum efficiency. Third panel: the optimized external quantum efficiency multiplied by the photon flux density on the LTC surface. Fourth panel: open-circuit voltages of the sub-cells. Dashed line represents the photovoltage at each location x. Vertical dotted lines denote the partitioning of the LTC into seven sub-cells. (b) The power-conversion efficiency as a function of the number of sub-cells employed. Square symbols are for the LTC employing the microcavity sub-cells. Also shown is the power-conversion efficiency of the LTC employing the ideal sub-cells whose external quantum efficiency is unity over the entire LTC (dot symbols).

Fig. 4.
Fig. 4.

Dependence of the external quantum efficiency on the incident angle. If the model device shown in Fig. 1 with t opt(λ) shown in Fig. 3(a) is excited by an obliquely incident unpolarized plane-wave, the resonance condition is not maintained, decreasing the external quantum efficiency (ηext). η0 ext,opt is the external quantum efficiency spectrum optimized for the case of normal incidence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I sc ( x i , x j ) = e x i x j η ext ( x ) n ph ( x ) d x
= e x i x j η ext ( x ) n ˜ ph ( λ ( x ) ) W d λ ( x ) d x d x ,
η p = I sc V ¯ oc F F LTC W n ˜ ph ( λ ) hc λ d λ
= { e sub cell η ext ( x ) n ph ( x ) d x } V ¯ oc F F LTC W n ˜ ph ( λ ) hc λ d λ ,

Metrics