Abstract

This work demonstrates the fabrication of a simple, low-cost microlens array (MLA) diffuser film with controllable haze distribution (diffusion effect) by a combination of “breath figures” (BFs) and micro-replica molding methods. Polystyrene (PS) molds obtained by BFs method contain concave, hexagonal packed air holes formed by the condensation of water vapor on cooling surfaces in a chamber in which relevant influence factors can be controlled. The sizes of the air holes in the BFs PS molds can be controlled by varying such factors as chamber temperature, chamber relative humidity, substrate temperature and others. The temperature distribution on the substrate affects the distribution of diameters of the air holes formed in a BFs PS mold. Convex PDMS (poly-dimethylsiloxane) MLAs were obtained by molding from the BFs PS molds. The focal lengths of MLAs were measured and compared with theoretical values. The diffusion effect of the diffuser films with MLAs of diameters 6 µm and 3 µm were compared. The results indicate that an MLA with a smaller diameter has a larger diffusion effect.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
    [CrossRef]
  2. E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
    [CrossRef]
  3. F. Merenda, J. Rohner, J. -M. Fournier, and R. -P. Salathé, "Miniaturized high-NA focusing-mirror multiple optical tweezers," Opt. Express 15, 6075-6086 (2007).
    [CrossRef] [PubMed]
  4. G. Schlingloff, H. -J. Kiel, and A. Schober, "Microlenses as amplification for CCD-based detection devices for screening applications in biology, biochemistry, and chemistry," Appl. Opt. 37, 1930-1934 (1998).
    [CrossRef]
  5. S. -I. Chang, J. B. Yoon, H. Kim, J. -J. Kim, B. -K. Lee, and D. H. Shin, "Microlens array diffuser for a light-emitting diode backlight system," Opt. Lett. 31, 3016-3018 (2006)
    [CrossRef] [PubMed]
  6. D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
    [CrossRef]
  7. H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
    [CrossRef]
  8. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]
  9. C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
    [CrossRef]
  10. M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
    [CrossRef]
  11. K. M. Baker, "Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces," Appl. Opt. 38, 352-356 (1999).
    [CrossRef]
  12. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
    [CrossRef]
  13. T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
    [CrossRef]
  14. W. X. Yu and X. -C. Yuan, "Fabricate of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography," Opt. Express 11, 899-903 (2003).
    [CrossRef] [PubMed]
  15. H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709-1711 (2005).
    [CrossRef] [PubMed]
  16. G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
    [CrossRef]
  17. J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
    [CrossRef]
  18. Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
    [CrossRef]
  19. L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
    [CrossRef]
  20. B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
    [CrossRef]
  21. G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
    [CrossRef]
  22. R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
    [CrossRef]

2007

2006

2005

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709-1711 (2005).
[CrossRef] [PubMed]

Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
[CrossRef]

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

2004

T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

2003

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
[CrossRef]

W. X. Yu and X. -C. Yuan, "Fabricate of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam lithography," Opt. Express 11, 899-903 (2003).
[CrossRef] [PubMed]

2002

M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

1999

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
[CrossRef]

E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
[CrossRef]

K. M. Baker, "Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces," Appl. Opt. 38, 352-356 (1999).
[CrossRef]

1998

1997

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

1996

C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

1994

G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
[CrossRef]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Baker, K. M.

Chang, S. -I.

Chao, C. -K.

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Cheng, J. -W. J.

T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Cui, L.

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

Ding, Y.

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

Ehlert, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Fournier, J. -M.

François, B.

G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
[CrossRef]

Grunwald, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Han, Y.

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Ho, J. -J.

T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kiel, H. -J.

Kim, G. H.

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

Kim, H.

Kim, J. -J.

Kim, M. -J.

E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
[CrossRef]

Kim, S. M.

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

Kim, W. J.

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

King, C. R.

C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Kwon, Y. -S.

E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
[CrossRef]

Lee, B. -K.

Lee, D. S.

D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
[CrossRef]

Lee, M. S.

D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
[CrossRef]

Li, B.

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

Li, C.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Li, X.

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Lin, C. -P.

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

Lin, L. Y.

C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

Liu, Z.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Lu, Y.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Merenda, F.

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
[CrossRef]

Min, S.-S.

D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Park, C.

M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Park, E. -H

E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
[CrossRef]

Peng, J.

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
[CrossRef]

Rawiso, M.

G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
[CrossRef]

Reinecke, W.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Rodgers, J. A

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Rohner, J.

Salathé, R. -P.

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Schlingloff, G.

Schober, A.

Shen, S. -C.

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

Shimomura, M.

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709-1711 (2005).
[CrossRef] [PubMed]

Shin, D. H.

Shin, T. -K.

T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Son, J. G.

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Wang, X.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Whitesides, G. M.

M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Widawski, G.

G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
[CrossRef]

Woggon, S.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Wu, M. C.

C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

Wu, M. -H

M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Xu, Y.

Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
[CrossRef]

Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
[CrossRef]

Yabu, H.

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709-1711 (2005).
[CrossRef] [PubMed]

Yang, H.

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

Yang, Y.

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

Yoon, J. B.

Yu, W. X.

Yuan, X. -C.

Zhang, J.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Zhao, B.

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Zhu, B.

Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A Rodgers, "Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process," Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

Displays

G. H. Kim, W. J. Kim, S. M. Kim, and J. G. Son, "Analysis of thermo-physical and optical properties of a diffuser using PET/PC/PBT copolymer in LCD backlight units," Displays 26, 37-43 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

T. -K. Shin, J. -J. Ho, J. -W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

E. -H Park, M. -J. Kim, and Y. -S. Kwon, "Microlens for efficient coupling between LED and optical fiber," IEEE Photon. Technol. Lett. 11, 439-441 (1999).
[CrossRef]

C. R. King, L. Y. Lin, and M. C. Wu, "Out-of-Plane Refractive Microlens Fabricated by Surface Micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

J. Micromech. Microeng.

H. Yang, C. -K. Chao, C. -P. Lin, and S. -C. Shen, "Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers," J. Micromech. Microeng. 14, 277-282 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

C. Kopp, L. Ravel, and P. Meyrueis, "Efficient beam shaper homogenizer design combining diffractive optical elements, microlens array, and random phase plate," J. Opt. A: Pure Appl. Opt. 1, 398-403 (1999).
[CrossRef]

Langmuir

M. -H Wu, C. Park, G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709-1711 (2005).
[CrossRef] [PubMed]

Nature

G. Widawski, M. Rawiso, and B. François, "Self-organized honeycomb morphology of star-polymer polystyrene films," Nature 369, 387-389 (1994).
[CrossRef]

Opt. Commun.

D. S. Lee, S.-S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach" Opt. Commun. 219, 49-55 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Polymer

J. Peng, Y. Han, Y. Yang, and B. Li, "The influencing factors on the macroporous formation in polymer films by water droplet templating," Polymer 45, 447-452 (2004).
[CrossRef]

Y. Xu, B. Zhu, and Y. Xu, "A study on formation of regular honeycomb pattern in polysulfone film," Polymer 46, 713-717 (2005).
[CrossRef]

L. Cui, J. Peng, Y. Ding, X. Li, and Y. Han, "Ordered porous polymer films via phase separation in humidity environment," Polymer 46, 5334-5340 (2005).
[CrossRef]

B. Zhao, C. Li, Y. Lu, X. Wang, Z. Liu, and J. Zhang, "Formation of ordered macroporous membranes from random copolymers by the breath figure method," Polymer 46, 9508-9513 (2005).
[CrossRef]

Pure Appl. Opt.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with non-spherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

PDMS MLAs formation process. (a) Moisture condensed on cold PS-CS2 surface. (b) Moisture was nucleated and arranged into a hexagonal array. (c) PS polymers formed a concave mold that contained a hexagonal arrangement of air holes. (d) PDMS was spin-cast onto PS concave mold. (e) After PS mold was peeled off, PDMS MLA was obtained.

Fig. 2.
Fig. 2.

SEM pictures of (a) hexagonal close-packed BFs mold and (b) inverted PDMS MLA.

Fig. 3.
Fig. 3.

Variation of average diameters of air holes in BFs molds with various influence factors: (a) Q, (b) RH and (c) TS at three values of TC - 20 °C, 25 °C and 30 °C.

Fig. 4.
Fig. 4.

(a). Set-up for generating temperature gradient on the substrate. (b). SEM pictures of BF mold formed at different positions on the substrate. (c). Average of air hole diameters obtained at different positions on substrate.

Fig. 5.
Fig. 5.

(a). Experimental setup for measuring the focal lengths of MLAs. (b) Images captured by microscope system at different positions along the z-axis for a PDMS MLA with diameter of 3 µm.

Fig. 6.
Fig. 6.

(a). Geometrical relationship among different parameters of a PDMS MLA. (b). Experimental and theoretical EF and BF values as functions of diameter of PDMS MLAs.

Fig. 7.
Fig. 7.

(a). Setup for measuring optical diffusion. (b). Optical diffusion through plane glass substrate. (c). Optical diffusion through MLAs with diameter of 6 µm. (d). Optical diffusion through MLA with diameter 3 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EF = L + h D ,
EF = nD 4 ( n 1 ) ,
BF = EF D 2 .

Metrics