Abstract

We show that the performance of precompensation of fiber nonlinearity in coherent optical OFDM systems operating at up to 60 Gbps/polarization can be improved by electrical filtering the precompensation signal. The optimal filter bandwidth is related to the FWM efficiency spectrum when dispersion is considered.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jansen, I. Morita, and H. Tanaka, "10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000 km of SSMF," in Optical Fiber Communication (San Diego, Calif., 2008), p. PDP2.
  2. Q. Yang, Y. Ma, and W. Shieh, "107 Gb/s coherent optical OFDM reception using orthogonal band multiplexing," in Optical Fiber Communication (San Diego, Calif., 2008), p. PDP7.
  3. A. J. Lowery, L. B. Du, and J. Armstrong, "Performance of optical OFDM in ultralong-haul WDM lightwave systems," J. Lightwave Technol. 25, 131-138 (2007).
    [CrossRef]
  4. W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
    [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, "Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF," J. Lightwave Technol. 26, 6-15 (2008).
    [CrossRef]
  6. A. J. Lowery, "Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation," IEEE Photon. Technol. Lett. 19, 1556-1558 (2007).
    [CrossRef]
  7. A. J. Lowery, "Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM," Opt. Express 15, 12965-12970 (2007).
    [CrossRef] [PubMed]
  8. W. Shieh, X. Yi, Y. Ma, and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Express 15, 9936-9947 (2007).
    [CrossRef] [PubMed]
  9. L. B. Du and A. J. Lowery, "Fiber nonlinearity precompensation for long-haul links using direct-detection optical OFDM," Opt. Express 16, 6209-6215 (2008).
    [CrossRef] [PubMed]
  10. A. J. Lowery, S. Wang, and M. Premaratne, "Calculation of power limit due to fiber nonlinearity in optical OFDM systems," Opt. Express 15, 13282-13287 (2007).
    [CrossRef] [PubMed]
  11. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, and I. Shpantzer, "The FWM impairment in coherent OFDM compounds on a phased-array basis over dispersive multi-span links," in Coherent Optical Technologies and Applications (Optical Society of America, 2008), p. CWA4.
  12. D. G. Schadt, "Effect of amplifier spacing on four-wave mixing in multichannel coherent communications," Electron. Lett. 27, 1805-1807 (1991).
    [CrossRef]
  13. A. D. Ellis and W. A. Stallard, "Four wave mixing in ultra long transmission systems incorporating linear amplifiers," IEE Colloquium on in Non-Linear Effects in Fibre Communications (1990), pp. 6/1-6/4.
  14. T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
    [CrossRef]
  15. K. Inoue, "Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers," Opt. Lett. 17, 801-803 (1992).
    [CrossRef] [PubMed]
  16. K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
    [CrossRef]
  17. S. L. Jansen, I. Morita, K. Forozesh, S. Randel, D. Borne, "Optical OFDM, a hype or is it for real?," in ECOC (Brussels, Belgium, 2008), p. Mo 3.E.3.
  18. X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
    [CrossRef]
  19. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
    [CrossRef]

2008 (2)

2007 (6)

2006 (1)

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

1996 (1)

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

1992 (2)

K. Inoue, "Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers," Opt. Lett. 17, 801-803 (1992).
[CrossRef] [PubMed]

K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
[CrossRef]

1991 (1)

D. G. Schadt, "Effect of amplifier spacing on four-wave mixing in multichannel coherent communications," Electron. Lett. 27, 1805-1807 (1991).
[CrossRef]

1990 (1)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

Chen, X.

X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
[CrossRef]

Chiang, T. K.

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

Du, L. B.

Edagawa, N.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Inoue, K.

K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
[CrossRef]

K. Inoue, "Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers," Opt. Lett. 17, 801-803 (1992).
[CrossRef] [PubMed]

Jansen, S. L.

Kagi, N.

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

Kazovsky, L. G.

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

Kim, C.

X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
[CrossRef]

Li, G.

X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
[CrossRef]

Lowery, A. J.

Ma, Y.

Marhic, M. E.

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

Morita, I.

Oda, K.

K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
[CrossRef]

Premaratne, M.

Schadt, D. G.

D. G. Schadt, "Effect of amplifier spacing on four-wave mixing in multichannel coherent communications," Electron. Lett. 27, 1805-1807 (1991).
[CrossRef]

Schenk, T. C. W.

Shieh, W.

Taga, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Takeda, N.

Tanaka, H.

Tang, Y.

Toba, H.

K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
[CrossRef]

Wakabayashi, H.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Wang, S.

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Yi, X.

Yoshida, Y.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

Zhou, B.

X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
[CrossRef]

Electron. Lett. (2)

W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
[CrossRef]

D. G. Schadt, "Effect of amplifier spacing on four-wave mixing in multichannel coherent communications," Electron. Lett. 27, 1805-1807 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. J. Lowery, "Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation," IEEE Photon. Technol. Lett. 19, 1556-1558 (2007).
[CrossRef]

X. Chen, C. Kim, G. Li, and B. Zhou, "Numerical Study of Lumped Dispersion Compensation for 40-Gb/s Return-to-Zero Differential Phase-Shift Keying Transmission," IEEE Photon. Technol. Lett. 19, 568-570 (2007).
[CrossRef]

J. Lightwave Technol. (5)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission," J. Lightwave Technol. 8, 1716-1722 (1990).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, "Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF," J. Lightwave Technol. 26, 6-15 (2008).
[CrossRef]

A. J. Lowery, L. B. Du, and J. Armstrong, "Performance of optical OFDM in ultralong-haul WDM lightwave systems," J. Lightwave Technol. 25, 131-138 (2007).
[CrossRef]

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol. 14, 249-260 (1996).
[CrossRef]

K. Inoue, H. Toba, and K. Oda, "Influence of fiber four-wave mixing on multichannel FSK direct detection transmission systems," J. Lightwave Technol. 10, 350-360 (1992).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (5)

S. L. Jansen, I. Morita, K. Forozesh, S. Randel, D. Borne, "Optical OFDM, a hype or is it for real?," in ECOC (Brussels, Belgium, 2008), p. Mo 3.E.3.

A. D. Ellis and W. A. Stallard, "Four wave mixing in ultra long transmission systems incorporating linear amplifiers," IEE Colloquium on in Non-Linear Effects in Fibre Communications (1990), pp. 6/1-6/4.

M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, and I. Shpantzer, "The FWM impairment in coherent OFDM compounds on a phased-array basis over dispersive multi-span links," in Coherent Optical Technologies and Applications (Optical Society of America, 2008), p. CWA4.

S. L. Jansen, I. Morita, and H. Tanaka, "10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000 km of SSMF," in Optical Fiber Communication (San Diego, Calif., 2008), p. PDP2.

Q. Yang, Y. Ma, and W. Shieh, "107 Gb/s coherent optical OFDM reception using orthogonal band multiplexing," in Optical Fiber Communication (San Diego, Calif., 2008), p. PDP7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Loci of nonlinear fields for a single span. Six pump-frequency separations shown.

Fig. 2.
Fig. 2.

Loci of the nonlinear fields for three spans.

Fig. 3.
Fig. 3.

FWM efficiency versus geometric mean of the frequency separation of three pumps for an 800-km S-SMF system.

Fig. 4.
Fig. 4.

Simulated Q [dB] against signal bandwidth with a spectral density of -6 dBm/5 GHz for three fiber types. Split-step method (points) versus MATLAB evaluation (lines).

Fig. 5.
Fig. 5.

Signal quality, Q, versus 0-dB electrical filter bandwidth of the precompensator.

Fig. 6.
Fig. 6.

Increase in Q over the analytical bound in [10] versus signal bandwidth due to (filtered and unfiltered) precompensation and dispersion.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η span = α 2 α 2 + Δ β 2 sin 2 ( s Δ β l 0 2 ) sin 2 ( Δ β l 0 2 ) ( 1 + 4 × exp ( α l 0 ) sin 2 ( Δ β l 0 2 ) [ 1 + exp ( α l 0 ) ] 2 ) [ 15 ]
Δ β = ( i k ) ( j k ) ( 2 π Δ f ) 2 λ 2 D 2 π c [ 16 ]

Metrics