Abstract

A high-brightness diode end-pumped Nd:YAG microchip laser, passively Q-switched by a Cr4+:YAG saturable absorber (SA), has been developed. The dependences of pulse energy and width were investigated based on theoretical verification to enhance the peak power. As a result, the peak power exceeded 1.2 MW with M2=1.04 and spectrum width Δλ<5.1 pm at a repetition rate of 100 Hz. Brightness of 98 TW/sr·cm2 was obtained with a supplied average electrical power of 2.3 W. The peak power increased up to 2.1 MW with M2=1.36. Peak power of 1.7 MW was obtained from a 2-cm-diameter×5-cm-long monolithic laser head.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
    [CrossRef]
  2. J. J. Zayhowski and C. DillIII, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
    [CrossRef] [PubMed]
  3. T. Taira and T. Kobayashi, "Q-switched and frequency doubling of solid-state lasers by a single intracavity KTP crystal," IEEE J. Quantum Electron. 30, 800-804 (1994).
    [CrossRef]
  4. J. J. Zayhowski, C. DillIII, C. Cook, and J. L. Daneu, "Mid-and high-power passively Q-switched microchip lasers," in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178-186.
  5. A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
    [CrossRef]
  6. J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
    [CrossRef]
  7. I. Frietag, A. Tunnermann, and H. Wekking, "Passively Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation," Opt. Lett. 22, 706-708 (1997).
    [CrossRef]
  8. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
    [CrossRef]
  9. D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
    [CrossRef]
  10. H. Sakai, A. Sone, H. Kan, and T. Taira, "Diode-pumped passively Q-switched high-brightness microchip lasers," in Conference on Lasers and Electro-Optics/Pacific Rim 2005, (Optical Society of America, 2005), paper CThI2_2.
    [CrossRef]
  11. T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, "Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CWF6
    [PubMed]
  12. H. Sakai, A. Sone, H. Kan, and T. Taira, " Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MD2. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2006-MD2
  13. S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, "Tunable terahertz-wave parametric generation pumped by microchip Nd:YAG laser," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MC30. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2008-MC30
  14. T. Taira, "High power, tunable microchip lasers," in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA3_3, Invited. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2007-CA3_3
  15. A. Szabo and R. A. Stein, "Theory of Laser Giant Pulsing by a Saturable Absorber," J. Appl. Phys. 36, 1562-1566 (1965).
    [CrossRef]
  16. J. J. Degnan, "Optimization of Passively Q-Switched Lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
    [CrossRef]
  17. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
    [CrossRef]
  18. J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
    [CrossRef]

2005

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

2003

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

2002

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

2001

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

2000

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

1997

1996

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

1995

J. J. Degnan, "Optimization of Passively Q-Switched Lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

1994

J. J. Zayhowski and C. DillIII, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

T. Taira and T. Kobayashi, "Q-switched and frequency doubling of solid-state lasers by a single intracavity KTP crystal," IEEE J. Quantum Electron. 30, 800-804 (1994).
[CrossRef]

1989

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

1965

A. Szabo and R. A. Stein, "Theory of Laser Giant Pulsing by a Saturable Absorber," J. Appl. Phys. 36, 1562-1566 (1965).
[CrossRef]

Beck, T.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Chen, W.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Dascalu, T.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Degnan, J. J.

J. J. Degnan, "Optimization of Passively Q-Switched Lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

Deng, P.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Denker, B.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Dill, C.

Dong, J.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Frietag, I.

Galagan, B.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Hellstrom, J. E.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Huber, G.

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

Ivleva, L.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Kalisky, Y.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Karlsson, G.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Kobayashi, T.

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

T. Taira and T. Kobayashi, "Q-switched and frequency doubling of solid-state lasers by a single intracavity KTP crystal," IEEE J. Quantum Electron. 30, 800-804 (1994).
[CrossRef]

Kravchik, L.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Kretschmann, H. M.

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

Kuleshov, N. V.

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

Labbe, C.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Lan, Y. L.

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

Laurell, F.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Lupei, V.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Pasiskevicius, V.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Pavel, N.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Philipps, G.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Podlipensky, A. V.

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

Rachum, U.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

Shen, D. Y.

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

Stein, R. A.

A. Szabo and R. A. Stein, "Theory of Laser Giant Pulsing by a Saturable Absorber," J. Appl. Phys. 36, 1562-1566 (1965).
[CrossRef]

Sverchkov, S.

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

Szabo, A.

A. Szabo and R. A. Stein, "Theory of Laser Giant Pulsing by a Saturable Absorber," J. Appl. Phys. 36, 1562-1566 (1965).
[CrossRef]

Taira, T.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

T. Taira and T. Kobayashi, "Q-switched and frequency doubling of solid-state lasers by a single intracavity KTP crystal," IEEE J. Quantum Electron. 30, 800-804 (1994).
[CrossRef]

Tan, S. C.

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

Tunnermann, A.

Waichman, K.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Weber, H.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Wekking, H.

Xu, J.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Yumashev, K. V.

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

Zayhowski, J. J.

Appl. Phys. B

A. V. Podlipensky, K. V. Yumashev, N. V. Kuleshov, H. M. Kretschmann, and G. Huber, "Passive Q-switching of 1.44 µm and 1.34 µm diode-pumped Nd:YAG lasers with a V:YAG saturable absorber," Appl. Phys. B 76, 245-247 (2003).
[CrossRef]

J. E. Hellstrom, G. Karlsson, V. Pasiskevicius, F. Laurell, B. Denker, S. Sverchkov, B. Galagan, and L. Ivleva, "Passive Q-switching at 1.54 μm of an Er-Yb:GdCa4O(BO3)3 laser with a Co2+:MgAl2O4 saturable absorber," Appl. Phys. B 81, 49-52 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Degnan, "Optimization of Passively Q-Switched Lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

T. Taira and T. Kobayashi, "Q-switched and frequency doubling of solid-state lasers by a single intracavity KTP crystal," IEEE J. Quantum Electron. 30, 800-804 (1994).
[CrossRef]

J. Appl. Phys.

A. Szabo and R. A. Stein, "Theory of Laser Giant Pulsing by a Saturable Absorber," J. Appl. Phys. 36, 1562-1566 (1965).
[CrossRef]

Jpn. J. Appl. Phys.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, "High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr:YAG saturrable absorber," Jpn. J. Appl. Phys. 40, 1253-1259 (2001).
[CrossRef]

Opt. Eng.

T. Dascalu, N. Pavel, V. Lupei, G. Philipps, T. Beck, and H. Weber, "Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser," Opt. Eng. 35,1247-1251 (1996).
[CrossRef]

Opt. Lett.

Opt. Mater.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403-413 (2002).
[CrossRef]

Opt. Rev.

D. Y. Shen, S. C. Tan, Y. L. Lan, and T. Kobayashi, "Diode-pumped passively Q-switched single-frequency Nd:YAG lasers," Opt. Rev. 7, 451-454 (2000).
[CrossRef]

Other

H. Sakai, A. Sone, H. Kan, and T. Taira, "Diode-pumped passively Q-switched high-brightness microchip lasers," in Conference on Lasers and Electro-Optics/Pacific Rim 2005, (Optical Society of America, 2005), paper CThI2_2.
[CrossRef]

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, "Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CWF6
[PubMed]

H. Sakai, A. Sone, H. Kan, and T. Taira, " Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MD2. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2006-MD2

S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, "Tunable terahertz-wave parametric generation pumped by microchip Nd:YAG laser," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper MC30. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2008-MC30

T. Taira, "High power, tunable microchip lasers," in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CA3_3, Invited. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2007-CA3_3

J. J. Zayhowski, C. DillIII, C. Cook, and J. L. Daneu, "Mid-and high-power passively Q-switched microchip lasers," in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178-186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Model of a diode end-pumped passively Q-switched microchip laser that includes a laser medium contacted optically to the SA. The pump source is operated with pulses to control the repetition rate of the passively Q-switched laser. Ag and ASA are the effective areas of resonator mode at the laser medium and SA, and wp is pumping beam radius at the beam waist.

Fig. 2.
Fig. 2.

Pulse energy Ep as a function of initial transmission of SA T0 . Closed circles denote experimental values and solid line shows calculation with Eq. (1). The cavity length is 20 mm (optical length lc =31 mm), the reflectivity of the output coupler is R=56% and the beam areas are Ag =ASA =2.0×10-3 cm2. The peak power of the pump source is adjusted in the range of 10 to 27 W so that only one pulse oscillates in pumping time, the pulse width is constant at 400 µs and the repetition frequency is at 100 Hz.

Fig. 3.
Fig. 3.

Pulse width tg as a function of cavity length lc . Closed circles denote experimental values, and solid line shows calculation with Eq. (2). The initial transmission is T0 =30%, the reflectivity of the output coupler is R=56% and the beam areas are Ag =ASA =2.0×10-3 cm2. Physical length limit (dashed line at lc =24 mm) shows that cavity length cannot be shortened any more by the relation of the lengths of the laser medium and SA. The peak power and pulse width of the pump source are 27 W and 400 µs, and the repetition frequency is 100 Hz.

Fig. 4.
Fig. 4.

Dependences of peak and average power as a function of repetition rate. The initial transmission is T0 =25%, the cavity length is 20 mm (optical length lc =31 mm) and the reflectivity of the output coupler is R=56%. The peak power and pulse width of a diode laser are 26 W and 350 µs.

Fig. 5.
Fig. 5.

Output pulse time shape with a pulse energy of 0.69 mJ at a repetition rate of 100 Hz. The detector and oscilloscope used for measurement are ET-3500 (Electro-Optics Technology Inc.; rise time of trD =35 ps) and TDS7040 (Tektronix Inc.; bandwidth of 4 GHz and rise time of trO =100 ps), respectively. The pulse width tp =(FWHM2-trD 2-trO 2 )1/2=580 ps. Inset shows beam profile of output pulse by Shack-Hartman method. Measurement results in almost single transverse mode (M2 =1.04).

Fig. 6.
Fig. 6.

Etalon fringe pattern of output pulses with a pulse energy of 0.69 mJ and a width of 580 ps at a repetition rate of 100 Hz measured by pulsed laser wavelength meter (WA-4550, EXFO Electro-Optical Engineering Inc.). Measured spectrum width is less than equipment resolution limit of 5.1 pm, which indicates a single longitudinal mode oscillation.

Fig. 7.
Fig. 7.

Optical head that includes a laser medium contacted optically to the SA. The cavity length and module size are 8 mm (optical length lc =15 mm) and 2-cm diameter×5-cm long, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E p = h v · A g 2 γ g σ g ln R ln δ f ,
t p = p · ln δ f c · ln T 0 l c · [ 1 δ t β p α ( 1 δ t a ) + ( 1 β p ) · ln δ t ] 1 ,
p = 2 ln T 0 ln R + L g 2 ln T 0 ,
α = γ SA σ SA A SA γ g σ g A g ,
β = σ SA σ ESA σ SA
1 δ f + ( 1 β p ) ln δ f + β p α ( 1 δ f α ) = 0 .
1 δ t β p ( 1 δ t α ) = 0 .

Metrics