Abstract

We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at ~975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached ~236 °C.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  2. G. Bonati, H. Voelckel, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Late Breaking Developments Session 5709-2a, Photonics West 2005.
  3. Information available from http://www.ipgphotonics.com.
  4. S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
    [CrossRef]
  5. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
    [CrossRef]
  6. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "Highly efficient high-power erbium-ytterbium co-doped large core fiber laser," ASSP 2005, Vienna, Austria, 6-9 Feb., 2005, paper MB33.
  7. Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
    [CrossRef]
  8. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
    [CrossRef]
  9. D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
    [CrossRef]
  10. Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
    [CrossRef]
  11. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006).
    [CrossRef] [PubMed]
  12. L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, "3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers," Opt. Express 13, 3420-3428 (2005).
    [CrossRef] [PubMed]
  13. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  14. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
    [CrossRef]
  15. S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
    [CrossRef]
  16. G. Gaussorgues and S. Chomet, Infrared Thermography (Springer, Berlin, 1994).
    [CrossRef]
  17. J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
    [CrossRef]

2007 (2)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

2006 (2)

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006).
[CrossRef] [PubMed]

2005 (2)

L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, "3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers," Opt. Express 13, 3420-3428 (2005).
[CrossRef] [PubMed]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

2004 (3)

Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

2003 (2)

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

2001 (2)

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

Alam, S.-U.

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Alvarez-Chavez, J. A.

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Baek, S.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

Brown, D. C.

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

Clarkson, W. A.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Dupriez, P.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Eberhardt, R.

Ehrt, D.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Grudinin, A. B.

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Hädrich, S.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Jackson, S. D.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

Lee, B.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Li, H.

Li, L.

Limpert, J.

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Mafi, A.

Moloney, J. V.

Morrell, M. M.

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Payne, D.

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Pertsch, T.

Peschel, T.

Peyghambarian, N.

Philipps, J. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Po, H.

Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Qiu, T.

Sahu, J.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

Sauerbrey, R.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Schreiber, T.

Schülzgen, A.

Shen, D.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

Temyanko, V. L.

Töpfer, T.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Tünnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

Wang, Y.

Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Xu, C-Q.

Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

Electron. Lett. (1)

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, "Power-scaling of a 975-nm diode-pumped ytterbium sensitized thulium-doped silica fibre laser operating in the 2 μm wavelength range," Electron. Lett. 41, 173-174 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

J. Nilsson, S.-U. Alam, J. A. Alvarez-Chavez, P. W. Turner, W. A. Clarkson, and A. B. Grudinin, "High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser," IEEE J. Quantum Electron. 39, 987 - 994 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, "Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power," IEEE J. Sel. Top. Quantum Electron. 13, 573-579 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Wang, C-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses," J. Appl. Phys. 72, 399-405 (2001).
[CrossRef]

Opt. Commun. (1)

S. D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (2)

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, "Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications," Opt. Fiber Technol. 12, 10-19 (2006).
[CrossRef]

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W," IEEE J.Sel. Top. Quantum Electron. 13, 546-551 (2007).
[CrossRef]

Other (4)

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "Highly efficient high-power erbium-ytterbium co-doped large core fiber laser," ASSP 2005, Vienna, Austria, 6-9 Feb., 2005, paper MB33.

G. Bonati, H. Voelckel, U. Krause, A. Tünnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, "1.53 kW from a single Yb-doped photonic crystal fiber laser," Late Breaking Developments Session 5709-2a, Photonics West 2005.

Information available from http://www.ipgphotonics.com.

G. Gaussorgues and S. Chomet, Infrared Thermography (Springer, Berlin, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental arrangement for an end-pumped YSEDF laser. HR-1.1: high reflectivity at ~1.1 µm; HR-1.5: high reflectivity at ~1.5 µm.

Fig. 2.
Fig. 2.

Fiber laser output power vs. launched pump power. Slope efficiency 36% with respect to launched pump power and 41% with respect to absorbed pump power. Lasing wavelength: 1565 nm.

Fig. 3.
Fig. 3.

Experimental data with the pump power up to 60.8 W: (a) Measured sensor spectra. (b) Longitudinal temperature distribution. The distance is measured from the pump-launch end of the fiber.

Fig. 4.
Fig. 4.

Numerical result: (a) The solid curves and dashed curves denote the temperature of the outer surface of the polymer cladding and the temperature of the center of the core, respectively. (b) The temperature profile in the radial direction at z=0 (the pump launch end) for a pump power of 60.8 W.

Fig. 5.
Fig. 5.

Numerical result based on an FEM analysis at z=z1 (0.2 m), with pump power of 60.8 W: (a) The 2-D temperature profile including the YSEDF and sensor fiber assembly. (b) The temperature profile cross-section at y=0.

Metrics