Abstract

To open up a 1-µm waveband for photonic transport systems, we developed a hybrid and harmonically mode-locked semiconductor laser (MLL) that can transmit return-to-zero (RZ) optical signals at data rates on the order of gigabits per second. A single-mode hole-assisted fiber (HAF) was also developed for use as a 1-µm waveband signal transmission line. A stable optical pulse train with a repetition rate of 9.953 GHz, pulse width of 22 ps, and low timing jitter of 120 fs was obtained from a 1035-nm harmonically MLL. With these devices, we successfully demonstrated 1-µm waveband error-free transmission of a high-speed 10-Gbps RZ signal over a long distance of 7 km.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals," in Proc. of OFC2007, Anaheim, CA, Postdeadline paper PDP19.
  2. H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, "20.4-Tb/s (204 × 111 Gb/s) Transmission over 240 km Using Bandwidth-Maximized Hybrid Raman/EDFAs," in Proc. of OFC2007, Anaheim, CA, Postdeadline paper PDP20.
  3. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  4. Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
    [CrossRef]
  5. N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
    [CrossRef]
  6. N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, "Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems," in Proc. of ISLC2008, Sorrento, Italy, P20.
  7. P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
    [CrossRef]
  8. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
    [CrossRef]
  9. A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
    [CrossRef]
  10. H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
    [CrossRef]
  11. K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, "1.1-µm-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency," in Proc. of OFC2007, Anaheim, CA, OMK-1.
  12. H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
    [PubMed]
  13. K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).
  14. H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).
  15. H. Yokoyama, "Highly reliable mode-locked semiconductor lasers," IEICE Trans. Electron. E 85-C, 27-36 (2002).

2007

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

2006

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

2005

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

2004

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

2003

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

2002

H. Yokoyama, "Highly reliable mode-locked semiconductor lasers," IEICE Trans. Electron. E 85-C, 27-36 (2002).

2000

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

1998

H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Aiso, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Akahane, K.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

Akiyama, T.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Arai, M.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Arakawa, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Ebe, H.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Fuchs, B.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Gozu, S.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

Guo, H. -C.

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Hasegawa, H.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Hatori, N.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Hirooka, T.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Hopkinson, M.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Houlihan, J.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Huyet, G.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Imamura, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Ishida, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Kondo, T.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Koyama, F.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Kurita, H.

H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).

Lester, L. F.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Li, H.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Liu, G.T.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Malloy, K. J.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Matsutani, A.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Miyabe, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Miyamoto, T.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Mukasa, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Mure, M.

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Muszalski, J.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Nakazawa, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Newell, T. C.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Ogura, I.

H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).

Ohtani, N.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

Oikawa, Y.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Onomura, A.

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Pearce, E. J.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Sato, A.

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Sato, K.

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Smowton, P. M.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Stintz, A.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Sugawara, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

Sugizaki, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Tanguy, Y.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Tsubokawa, H.

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Varangis, P. M.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

Yagi, T.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Yamamoto, N.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

Yokoyama, H.

H. Yokoyama, "Highly reliable mode-locked semiconductor lasers," IEICE Trans. Electron. E 85-C, 27-36 (2002).

H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Yoshida, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Appl. Phys. Lett.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, "Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates," Appl. Phys. Lett. 86, 203118 (2005).
[CrossRef]

E

H. Kurita, I. Ogura, and H. Yokoyama, "Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers," IEICE Trans. Electron. E 81-C, 129-139 (1998).

H. Yokoyama, "Highly reliable mode-locked semiconductor lasers," IEICE Trans. Electron. E 85-C, 27-36 (2002).

Electron. Lett.

P. M. Varangis, H. Li, G.T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Low-threshold quantum dot lasers with 201 nm tuning range," Electron. Lett. 36, 1544-1545 (2000).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

IEICE Electron. Express

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD," IEICE Electron. Express 3, 109-114 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments," Jpn. J. Appl. Phys. 43, L1124 (2004).
[CrossRef]

A. Onomura, M. Arai, T. Kondo, A. Matsutani, T. Miyamoto, and F. Koyama, "Densely Integrated Multiple-Wavelength Vertical-Cavity Surface-Emitting Laser Array," Jpn. J. Appl. Phys. 42, L529-L531 (2003).
[CrossRef]

Opt. Comm.

Y. Tanguy, J. Muszalski, J. Houlihan, G. Huyet, E. J. Pearce, P. M. Smowton and M. Hopkinson, "Mode formation in broad area quantum dot lasers at 1060 nm," Opt. Comm. 235, 387-393 (2004).
[CrossRef]

Opt. Express

H. Yokoyama, A. Sato, H. -C. Guo, K. Sato, M. Mure, and H. Tsubokawa, "Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers," Opt. Express (in press).
[PubMed]

Proc. SPIE

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications," Proc. SPIE 6769, 67690J-1 (2007).

Other

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, "1.1-µm-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency," in Proc. of OFC2007, Anaheim, CA, OMK-1.

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals," in Proc. of OFC2007, Anaheim, CA, Postdeadline paper PDP19.

H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, "20.4-Tb/s (204 × 111 Gb/s) Transmission over 240 km Using Bandwidth-Maximized Hybrid Raman/EDFAs," in Proc. of OFC2007, Anaheim, CA, Postdeadline paper PDP20.

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, "Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems," in Proc. of ISLC2008, Sorrento, Italy, P20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic cross-sectional image of the laser; (b) set-up of external-cavity 1-µm-waveband MLL. SA denotes the saturable absorber. The lasing wavelength is controlled by using an optical filter in an external cavity [12].

Fig. 2.
Fig. 2.

Gain current vs. light output (I-L) curves for different bias voltages in the SA section. The optical power is measured at the output of a single mode fiber.

Fig. 3.
Fig. 3.

(a) Laser spectrum from the fabricated MLL, and (b) 1.0-GHz optical pulse train from the hybrid MLL.

Fig. 4.
Fig. 4.

RF signal spectrum of the optical pulse train with passive and hybrid mode-locking operations.

Fig. 5.
Fig. 5.

Laser spectrum of the harmonically MLL. A 9.953-GHz RF input is applied to the gain section.

Fig. 6.
Fig. 6.

(a) RF spectrum of the MLL with harmonic mode-locking using the eighth harmonic; (b) SSB of the eighth harmonic peak.

Fig. 7.
Fig. 7.

Experimental setup for gigabit photonic transmission in the 1-µm-waveband. A harmonically MLL and a HAF were used as the high-speed RZ optical signal source and 1-µm-waveband single-mode transmission line, respectively.

Fig. 8.
Fig. 8.

Eye-diagrams measured (a) before transmission, (b) after transmission over 7 km, and (c) after transmission over 7 km with CDR. (d) Measured BERs for different transmission distances.

Metrics