Abstract

We describe a combined interferometric scheme that enables absolute distance measurements using a femtosecond pulse laser. This method is combined with synthetic wavelength interferometry (SWI), time of flight (TOF) and spectrally-resolved interferometry (SRI) using the optical comb of femtosecond laser. Each technique provides distinct measuring resolutions and ambiguity ranges which are complementary to each other. These separate measurement principles are incorporated and implemented simultaneously and the unified output can enhance the dynamic range of the measuring system. Our experimental results demonstrate an example of absolute distance measurement with the proposed technique and we discuss the possibility of the combined method to measure long distances and the important factors for the implementation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. de Groot and J. McGarvey, "Chirped synthetic-wavelength interferometry," Opt. Lett. 17, 1626-1628 (1992).
    [CrossRef] [PubMed]
  2. T. Kubota, M. Nara, and T. Yoshino, "Interferometer for measuring displacement and distance," Opt. Lett. 12, 310-312 (1987).
    [CrossRef] [PubMed]
  3. Y. Y. Cheng and J. C. Wyant, "Multiple-wavelength phase-shifting interferometry," Appl. Opt. 24, 804-807 (1985).
    [CrossRef] [PubMed]
  4. J. Schwider and L. Zhou, "Dispersive interferometric profiler," Opt. Lett. 19, 995-997 (1994).
    [CrossRef] [PubMed]
  5. K. Minoshima and H. Matsumoto, "High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser," Appl. Opt. 39, 5512-5517 (2000).
    [CrossRef]
  6. C. E. Towers, D. P. Towers, D. T. Reid, W. N. MacPherson, R. R. J. Maier, and J. D. C. Jones, "Fiber interferometer for simultaneous multiwavelength phase measurement with a broadband femtosecond laser," Opt. Lett. 29, 2722-2724 (2004).
    [CrossRef] [PubMed]
  7. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, "Frequency-comb-referenced two-wavelength source for absolute distance measurement," Opt. Lett. 31, 3101-3103 (2006).
    [CrossRef] [PubMed]
  8. Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).
  9. Y. -J. Kim, J. Jin, Y. Kim, S. H. and S. -W. Kim, "A wide-range optical frequency generator based on the frequency comb of a femtosecond laser," Opt. Express 16, 258-264 (2008).
    [CrossRef] [PubMed]
  10. J. Ye, "Absolute measurement of a long, arbitrary distance to less than an optical fringe," Opt. Lett. 29, 1153-1155 (2004).
    [CrossRef] [PubMed]
  11. K.-N. Joo and S.-W. Kim, "Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser," Opt. Express 14, 5954-5960 (2006).
    [CrossRef] [PubMed]
  12. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]

2008

Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).

Y. -J. Kim, J. Jin, Y. Kim, S. H. and S. -W. Kim, "A wide-range optical frequency generator based on the frequency comb of a femtosecond laser," Opt. Express 16, 258-264 (2008).
[CrossRef] [PubMed]

2006

2004

2000

K. Minoshima and H. Matsumoto, "High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser," Appl. Opt. 39, 5512-5517 (2000).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

1994

1992

1987

1985

Cheng, Y. Y.

Dändliker, R.

de Groot, P.

Floch, S. L.

Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Holzwarth, R.

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, "Frequency-comb-referenced two-wavelength source for absolute distance measurement," Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Jin, J.

Jones, J. D. C.

Joo, K.-N.

Kim, S.-W.

Kim, Y.

Kim, Y. -J.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Kubota, T.

Lévêque, S.

Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, "Frequency-comb-referenced two-wavelength source for absolute distance measurement," Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

MacPherson, W. N.

Maier, R. R. J.

Matsumoto, H.

McGarvey, J.

Minoshima, K.

Nara, M.

Reid, D. T.

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Salvadé, Y.

Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, "Frequency-comb-referenced two-wavelength source for absolute distance measurement," Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

Schuhler, N.

Y. Salvadé, N. Schuhler, S. Lévêque and S. L. Floch, "High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source," Opt. Express 47, 2715-2720 (2008).

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, "Frequency-comb-referenced two-wavelength source for absolute distance measurement," Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

Schwider, J.

Towers, C. E.

Towers, D. P.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Wyant, J. C.

Ye, J.

Yoshino, T.

Zhou, L.

Appl. Opt.

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Overall configuration of the interferometer for measuring absolute distances: synthetic wavelength interferometer (SWI) unit, time of flight (TOF) unit and spectrally-resolved interferometer (SRI) unit. FS laser; femtosecond laser, PDR, PDM; photodetector, BS; beam splitter, PBS1, PBS2; polarizing beam splitter, QWP; quarter wave plate, FPE; Fabry-Perot etalon, MR; reference mirror, MM; measurement mirror, P; 45° polarizer, G; diffraction grating.

Fig. 2.
Fig. 2.

The principle of combined technique. Time of flight (TOF) determines the multiple integer m1 of synthetic wavelength λeq and synthetic wavelength interferometer (SWI) measures the multiple integer m2 of non-ambiguity range of spectrally-resolved interferometer (SRI). They measures the distance with the same path simultaneously.

Fig. 3.
Fig. 3.

Experimental results of (a) SRI, (b) SWI and (c) compensated result of SRI with (b). The inlets mean the measurement result at the displacement of 35 mm. The result in (c) is better than that of (b) because it was measured by SRI.

Fig. 4.
Fig. 4.

Experimental result of TOF. The time difference between the first reference and the measurement pulses is used for the distance measurements.

Fig. 5.
Fig. 5.

Filtered comb of the femtosecond pulse laser by Fabry-Perot etalon (FPE); (a) two modes are filtered by FPE and detected in one pixel of the line CCD and (b) the measurement results of SRI are repeated with the synthetic wavelength determined by mode spacing of the femtosecond pulse laser.

Tables (1)

Tables Icon

Table 1. Synthetic wavelength corresponding to the mode spacing harmonics of a femtosecond laser

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L = m 2 × L NAR + ς ( m 2 : even number )
= ( m 2 + 1 ) × L NAR ς ( m 2 : odd number )
m 2 = int ( L s L NAR )
L s = m 1 ( λ eq 2 ) + L syn

Metrics