Abstract

In this paper the length of a photonic crystal fiber is optimised to perform high average output power parametric generation with maximum efficiency. It is shown that the fiber length has to be increased up to 150 m, well beyond the walk-off distance between the pump and signal/idler, to optimize the generation efficiency. In this regime, the Raman process can take over from four-wave mixing and lead to supercontinuum generation. It is shown that the parametric wavelength conversion is directional; probably due to small variations in the core dimensions along the fiber length. The fiber exhibits up to 40% conversion efficiency, with the idler (0.9 µm) and the signal (1.3 µm) having a combined output power of over 1.5 W.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett. 6, 493-495 (1981).
    [CrossRef] [PubMed]
  2. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  3. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
    [CrossRef]
  4. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  5. Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
    [CrossRef]
  6. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006).
    [CrossRef] [PubMed]
  7. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534 (2005).
    [CrossRef] [PubMed]
  8. J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  9. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
    [CrossRef] [PubMed]
  10. A. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
    [CrossRef] [PubMed]
  11. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007).
    [CrossRef] [PubMed]
  12. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, "Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators," Opt. Express 15, 1474-1479 (2007).
    [CrossRef] [PubMed]
  13. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]
  14. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Full vector analysis of a realistic photonic crystal fibre," Opt. Lett. 24, 276-278 (1999).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).
  16. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm," Opt. Lett. 12, 1035-1037 (1987).
    [CrossRef] [PubMed]
  17. G. Capellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991).
    [CrossRef]
  18. C. J. McKinstrie, X. D. Cao, and J. S. Li, "Nonlinear detuning of four-wave interactions," J. Opt. Soc. Am. B 10, 1856-1869 (1993).
    [CrossRef]
  19. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express 14, 9491-9501 (2006).
    [CrossRef] [PubMed]

2007 (3)

2006 (3)

2005 (2)

2004 (3)

2003 (1)

2001 (1)

1999 (1)

1993 (1)

1991 (1)

1987 (1)

1981 (1)

Alibart, O.

J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Andres, P.

Biancalana, F.

Birks, T.

Birks, T. A.

Bock, P. J.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

Cao, X. D.

Capellini, G.

Chen, A. H.

Chen, J. S.

Chen, J. S. Y.

Coen, S.

Coker, A.

de Matos, C. J. S.

Duligall, J.

Ferrando, A.

Fiorentino, M.

Foster, M. A.

Fulconis, J.

J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

Gomes, A. S. L.

Gouveia-Neto, A. S.

Hall, T. J.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

Hansen, K. P.

Harvey, J. D.

Joly, N.

Joly, N. Y.

Knight, J.

Knight, J. C.

Kruhlak, R. J.

Kumar, P.

Lasri, J.

Leonhardt, R.

Leon-Saval, S. G.

Li, J. S.

Lin, C.

Liu, J. R.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

Lu, Z. G.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

Lyngnes, O.

Marie, V.

McKinstrie, C. J.

Miret, J. J.

Murdoch, S. G.

Obrien, J. L.

J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Pearson, A. D.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534 (2005).
[CrossRef] [PubMed]

Reed, W. A.

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

Shang, H. T.

Sharping, J. E.

Silvestre, E.

Sun, F. G.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

Taylor, J. R.

Trillo, S.

Vogel, K.

Wadsworth, W.

Wadsworth, W. J.

Windeler, R. S.

Wong, G. K.

Wong, G. K. L.

Electron. Lett. (1)

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (8)

A. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
[CrossRef] [PubMed]

R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006).
[CrossRef] [PubMed]

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
[CrossRef] [PubMed]

C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett. 6, 493-495 (1981).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, "High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm," Opt. Lett. 12, 1035-1037 (1987).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Full vector analysis of a realistic photonic crystal fibre," Opt. Lett. 24, 276-278 (1999).
[CrossRef]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. Fulconis, O. Alibart, J. L. Obrien, W. J. Wadsworth, and J. G. Rarity, "Non classical interference and entanglement generation using a photonic crystal fiber pair photon source," Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SEM of the fiber end face. The fiber has a pitch of 2.47 µm, a hole diameter of 0.90 µm and a core diameter of 4.1 µm.

Fig. 2.
Fig. 2.

Loss curve (a, left) and dispersion curve (b, right).

Fig. 3.
Fig. 3.

Phase-matching diagram calculated for P=0 (dashed curve) and for P=500 W (solid curve).

Fig. 4.
Fig. 4.

Output spectra obtained for 1, 2, …, 6 W of input pump power. An increase of 1 W of input pump power represents an increase of 70 W peak power. Note that the peak at 950 nm is an artifact of the OSA linked with the large pump signal at 1.064 µm. The intensity is in dB.

Fig. 5.
Fig. 5.

Output spectra from the 150 m long PCF for different average output powers. The intensity is given in dB.

Fig. 6.
Fig. 6.

Output spectra from the 150 m fiber pumped at maximum power (about 3.5 W coupled into fiber) with and without the diode seed.

Fig. 7.
Fig. 7.

Output spectra obtained at maximum pump power for different fiber lengths (a): 10 m, (b): 20 m, (c): 30 m, (d): 50 m, (e):100 m, (f): 150 m. The intensity level is in dB. Note that the peak at 840 nm is an artifact of the OSA linked with the large pump signal at 1.064 µm.

Fig. 8.
Fig. 8.

Evolution of the measured FWM efficiency as a function of fiber length.

Fig. 9.
Fig. 9.

Output spectra (unseeded) obtained by pumping each end of a 50 m length of fiber at maximum power.

Tables (1)

Tables Icon

Table 1. Distribution of power between significant spectral features for increasing fiber length at max. pump power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 β pump = β signal + β idler + 2 γ P
2 ω pump = ω signal + ω idler
γ = 2 π η 2 λ A eff
F ( P 0 , L > L eff ) [ 1.5 × 10 5 exp ( γ P 0 L eff ) ] × [ 1 + 0.15 * ( L L eff ) ]

Metrics