Abstract

Both AuGe based alloys and Ti/Au metal layer stacks are widely used as ohmic metal contacts for photoconductive THz antennas made of low temperature grown GaAs. Here, we present the first systematic comparison between these two metallization types. A series of antennas of both kinds is excited by femtosecond laser pulses and by the emission from two diode lasers, i.e. we test the structures as pulsed THz emitters and as photomixers. In both cases, coherent and incoherent detection schemes are employed. We find that the power emitted from the antennas with AuGe metallization is 50% higher than that of antennas with a Ti/Au metal layer. From a comparison with a photomixer model we conclude that the higher output power results from a lower contact resistance of the AuGe contacts leading to an increased current flow. However, Ti/Au contacts have a higher thermal stability which might be advantageous if high system stability is called for.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [CrossRef]
  2. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
    [CrossRef]
  3. S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
    [CrossRef]
  4. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
    [CrossRef]
  5. K. Sakai (ed), Terahertz Optoelectronics (Springer, Berlin, 2005).
    [CrossRef]
  6. J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
    [CrossRef]
  7. K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
    [CrossRef]
  8. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
    [CrossRef]
  9. M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
    [CrossRef]
  10. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
    [CrossRef]
  11. M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
    [CrossRef]
  12. M. Mikulics, “Preparation and Optimization of Low-Temperature-Grown GaAs Photomixers,” PhD thesis, RWTH Aachen and FZ Jülich, (2005).
  13. X-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductor with femtosecond optics,” J. Lumin. 66, 488–492 (1996).
    [CrossRef]
  14. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
    [CrossRef]
  15. M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
    [CrossRef]
  16. M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
    [CrossRef]
  17. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
    [CrossRef]
  18. M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
    [CrossRef]
  19. M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
    [CrossRef]
  20. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
    [CrossRef]
  21. N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
    [CrossRef]
  22. A. Krotkus, K. Bertulis, and R. Adomavicius, “Low temperature MBE grown GaAs for terahertz radiation application,” proc. 12th GAAS Symposium-Amsterdam (2004).
  23. E. D. Marshall and M. Murakami, “in Contacts to semiconductor,” L.J. Brillson, ed. (Noyes Publication, New Jersey, 1993).
  24. A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
    [CrossRef]
  25. N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
    [CrossRef]
  26. J. B. Gunn, “The Discovery of Microwave Oscillation in Gallium Arsenide,” IEEE Trans. Electron. Devices 23, 705–713 (1976).
    [CrossRef]
  27. N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
    [CrossRef]
  28. M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
    [CrossRef]
  29. W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
    [CrossRef]
  30. J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
    [CrossRef]
  31. Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
    [CrossRef]
  32. M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406–412 (1980).
    [CrossRef]
  33. H. Kuchling, Taschenbuch der Physik (Fachbuchverlag Leipzig, 2001).
  34. J. D. Speight and K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallization on n-type GaAs at 250°-450°C,” Thin Solid Films 25, S31–S37 (1975).
    [CrossRef]
  35. R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).
  36. G. Donzelli and A. Paccagnella, “Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET’s,” IEEE Tans. Electron. Devices 34, 957–960 (1987).
    [CrossRef]
  37. S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
    [CrossRef]
  38. H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
    [CrossRef]
  39. M. Griebel, Ultraschnelle Ladungsträgerdynamik in LTG-GaAs und ErAs:GaAs-Übergittern-Grundlagen und Anwendungen, PhD thesis, MPI, Stuttgart, (2002).
  40. J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
    [CrossRef]
  41. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
    [CrossRef]
  42. M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
    [CrossRef]
  43. S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
    [CrossRef]
  44. N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
    [CrossRef]
  45. H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
    [CrossRef]
  46. J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
    [CrossRef]
  47. F. Smith, “The device applications and characterization of nonstoichiometric GaAs grown by molecular beam epitaxy,” PhD thesis, MIT, Massachusetts, (1990).
  48. N. Zamdmar, “The design and testing of integrated circuits for submillimeter wave spectroscopy,” PhD thesis, MIT, Massachusetts (1999).
  49. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [CrossRef]
  50. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
    [CrossRef] [PubMed]
  51. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
    [CrossRef]
  52. E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
    [CrossRef]

2008 (1)

2007 (1)

S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
[CrossRef]

2006 (3)

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

2005 (3)

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

2003 (2)

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

2002 (1)

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

2001 (2)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

2000 (3)

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
[CrossRef]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

1999 (2)

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

1998 (1)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

1997 (6)

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

1996 (4)

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

X-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductor with femtosecond optics,” J. Lumin. 66, 488–492 (1996).
[CrossRef]

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

1995 (2)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

1993 (2)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[CrossRef]

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

1990 (2)

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
[CrossRef]

1989 (1)

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

1987 (2)

G. Donzelli and A. Paccagnella, “Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET’s,” IEEE Tans. Electron. Devices 34, 957–960 (1987).
[CrossRef]

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

1986 (1)

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

1980 (1)

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406–412 (1980).
[CrossRef]

1976 (1)

J. B. Gunn, “The Discovery of Microwave Oscillation in Gallium Arsenide,” IEEE Trans. Electron. Devices 23, 705–713 (1976).
[CrossRef]

1975 (1)

J. D. Speight and K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallization on n-type GaAs at 250°-450°C,” Thin Solid Films 25, S31–S37 (1975).
[CrossRef]

1971 (1)

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

1967 (1)

N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
[CrossRef]

Adam, R.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

Adomavicius, R.

A. Krotkus, K. Bertulis, and R. Adomavicius, “Low temperature MBE grown GaAs for terahertz radiation application,” proc. 12th GAAS Symposium-Amsterdam (2004).

Ahmed, S.

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

Baca, A. G.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Beere, H. E.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

Bertulis, K.

A. Krotkus, K. Bertulis, and R. Adomavicius, “Low temperature MBE grown GaAs for terahertz radiation application,” proc. 12th GAAS Symposium-Amsterdam (2004).

Bieler, M.

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

Bochem, H. P.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Braslau, N.

N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
[CrossRef]

Breitfeld, F.

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Briggs, R. D.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Brown, E. R.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[CrossRef]

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

Buca, D.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Callegari, A. C.

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

Cámara Mayorga, I.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Cernea, M.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Chen, N. P.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

Chin, T. P.

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

Cooper, K.

J. D. Speight and K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallization on n-type GaAs at 250°-450°C,” Thin Solid Films 25, S31–S37 (1975).
[CrossRef]

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

DiNatale, W. F.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

Donzelli, G.

G. Donzelli and A. Paccagnella, “Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET’s,” IEEE Tans. Electron. Devices 34, 957–960 (1987).
[CrossRef]

Duffy, S. M.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

Evans, K. R.

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Fang, Z-Q.

H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
[CrossRef]

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Förster, A.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Ghita, R. V.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Gopen, H. J.

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

Gossard, A. C.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Griebel, M.

M. Griebel, Ultraschnelle Ladungsträgerdynamik in LTG-GaAs und ErAs:GaAs-Übergittern-Grundlagen und Anwendungen, PhD thesis, MPI, Stuttgart, (2002).

Gu, P.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

Gunn, J. B.

J. B. Gunn, “The Discovery of Microwave Oscillation in Gallium Arsenide,” IEEE Trans. Electron. Devices 23, 705–713 (1976).
[CrossRef]

N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
[CrossRef]

Güsten, R.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Gyulai, J.

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

Hangyo, M.

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Harmon, E. S.

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

Hein, G.

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

Heisig, S.

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

Hu, Q.

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

Indlekofer, K. M.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Jackson, A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

Jacobsen, R. H.

Janes, D. B.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

Jaschinsky, P.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Jepsen, P. U.

Kao, Y. C.

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

Kasai, S.

S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
[CrossRef]

Keiding, S. R.

Keil, U. D.

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

Kendelwicz, T.

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Khafizov, M.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Koch, M.

Kono, S.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

Kordos, P.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

Kordoš, P.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Kovác, P.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Krotkus, A.

A. Krotkus, K. Bertulis, and R. Adomavicius, “Low temperature MBE grown GaAs for terahertz radiation application,” proc. 12th GAAS Symposium-Amsterdam (2004).

Kuchling, H.

H. Kuchling, Taschenbuch der Physik (Fachbuchverlag Leipzig, 2001).

Lazarescu, M. F.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Lecher, H.

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

Lepsa, M. I.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Li, X.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

Logofatu, C.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Look, D. C.

H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
[CrossRef]

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Lundstrom, M. S.

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

Luo, J. K.

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

Lüth, H.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Lyszczarz, T. M.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

Manasreh, M. O.

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Manea, A. S.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Manfra, M. J.

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

Marshall, E. D.

E. D. Marshall and M. Murakami, “in Contacts to semiconductor,” L.J. Brillson, ed. (Noyes Publication, New Jersey, 1993).

Marso, M.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Matsuura, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

Mayer, J. W.

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

McIntosh, K. A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[CrossRef]

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

McIntosh, K.A.

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

McInturff, D. T.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

McMahon, O. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

Melloch, M. R.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

Michael, E. A.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

Michael, E.A.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Mikulics, M.

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
[CrossRef] [PubMed]

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

M. Mikulics, “Preparation and Optimization of Low-Temperature-Grown GaAs Photomixers,” PhD thesis, RWTH Aachen and FZ Jülich, (2005).

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Moore, T. M.

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

Morgan, D.V.

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

Murakami, M.

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

E. D. Marshall and M. Murakami, “in Contacts to semiconductor,” L.J. Brillson, ed. (Noyes Publication, New Jersey, 1993).

Murakami, Y.

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Nakashima, S.

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Negrila, C.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

Newman, N.

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Nichols, K. B.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

Oesterschulze, E.

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

Ogawa, M.

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406–412 (1980).
[CrossRef]

Ouchi, T.

S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
[CrossRef]

Paccagnella, A.

G. Donzelli and A. Paccagnella, “Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET’s,” IEEE Tans. Electron. Devices 34, 957–960 (1987).
[CrossRef]

Patkar, M. P.

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

Pearton, S. J.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Pirug, G.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Randall, J. N.

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

Ren, F.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Rodriguez, V.

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

Sakai, K.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Schieder, R.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

Shih, Y-C.

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

Siegner, U.

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

Sizelove, J. R.

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Smith, F.

F. Smith, “The device applications and characterization of nonstoichiometric GaAs grown by molecular beam epitaxy,” PhD thesis, MIT, Massachusetts, (1990).

Smith, F. W.

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[CrossRef]

Sobolewski, R.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

Speight, J. D.

J. D. Speight and K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallization on n-type GaAs at 250°-450°C,” Thin Solid Films 25, S31–S37 (1975).
[CrossRef]

Spicer, W.E.

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Spitzer, M.

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

Stancek, S.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Staples, J. L.

N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
[CrossRef]

Stark, J. B.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Steffens, W. M.

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

Stutz, C. E.

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Stutzki, J.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

Tani, M.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Thomas, H.

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

Tomozawa, S.

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Tonouchi, M.

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Ueng, H. J.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

van der Hart, A.

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

van Schilgaarde, M.

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Verghese, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

Voigtländer, B.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Walters, D. C.

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

Wang, Z.

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Watanabe, M.

S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
[CrossRef]

Webb, K. J.

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

Wensorra, J.

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Westwood, D.

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

Wilk, R.

Wilkie, E. L.

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

Williams, M.D.

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Wolter, M.

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Woodall, J. M.

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

Wu, S.

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

Yamamoto, H.

H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
[CrossRef]

Yamashita, M.

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
[CrossRef]

Yang, C. H.

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

Yu, A. Y. C.

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

Zamdmar, N.

N. Zamdmar, “The design and testing of integrated circuits for submillimeter wave spectroscopy,” PhD thesis, MIT, Massachusetts (1999).

Zamdmer, N.

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

Zhang, X-C.

X-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductor with femtosecond optics,” J. Lumin. 66, 488–492 (1996).
[CrossRef]

Zheng, X.

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

Zolper, J. C.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

W. M. Steffens, S. Heisig, U. D. Keil, and E. Oesterschulze, “Spatio-temporal imaging of voltage pulses with a laser-gated photoconductive sampling probe,” Appl. Phys. B 69, 455–458 (1999).
[CrossRef]

Appl. Phys. Lett (1)

H. Yamamoto, Z-Q. Fang, and D. C. Look, “Nonalloyed ohmic contacts on low-temperature molecular beam epitaxial GaAs: Influence of deep donor band,” Appl. Phys. Lett,  57, 1537–1539 (1990).
[CrossRef]

Appl. Phys. Lett. (13)

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, “Very low resistance nonalloyed ohmic contacts using low-temperature molecular beam epitaxy of GaAs,” Appl. Phys. Lett. 66, 1412–1414 (1995).
[CrossRef]

E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis, “Measurements of optical-heterodyne conversion in low-temperature-grown GaAs,” Appl. Phys. Lett. 62, 1206–1208 (1993).
[CrossRef]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844– 3846 (1995).
[CrossRef]

N. Zamdmer, Q. Hu, K.A. McIntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett. 75, 2313–2315 (1999).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. B. Stark, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77, 4104–4106 (2000).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83, 3117–3119 (2003).
[CrossRef]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70, 354–356 (1997).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[CrossRef]

M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S. Stanček, P. Kováč, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and H. Lüth, “Photomixers fabricated on nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 87, 41106-1–41106-3, (2005).
[CrossRef]

M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperaturegrown GaAs,” Appl. Phys. Lett. 88, 41118-1–41118-3, (2006).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-d thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 2122–2124, (1996).
[CrossRef]

Electron. Lett. (2)

M. Bieler, M. Spitzer, H. Lecher, G. Hein, and U. Siegner, “Transfer of sub-5 ps electrical test pulses to coplanar and coaxial electronic devices,” Electron. Lett. 38, 125–126 (2002).
[CrossRef]

S. Ahmed, M. R. Melloch, D. T. McInturff, J. M. Woodall, and E. S. Harmon, “Low-temperature grown GaAs tunnel junctions,” Electron. Lett. 33, 1585–1587 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

IEEE Photon. Techn. Lett. (2)

M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Kordos, “High-Speed Photoconductive Switch Based on Low-Temperature GaAs Transferred on SiO2-Si Substrate,” IEEE Photon. Techn. Lett. 15, 528– 530 (2003).
[CrossRef]

M. Mikulics, S. Wu, M. Marso, R. Adam, A. Förster, A. van der Hart, P. Kordos, H. Lüth, and R. Sobolewski, “Ultrafast and Highly Sensitive Photodetectors with Recessed Electrodes Fabricated on Low-Temperature-Grown GaAs,” IEEE Photon. Techn. Lett. 18, 820–822 (2006).
[CrossRef]

IEEE Tans. Electron. Devices (1)

G. Donzelli and A. Paccagnella, “Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET’s,” IEEE Tans. Electron. Devices 34, 957–960 (1987).
[CrossRef]

IEEE Trans. Electron. Devices (1)

J. B. Gunn, “The Discovery of Microwave Oscillation in Gallium Arsenide,” IEEE Trans. Electron. Devices 23, 705–713 (1976).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate Modeling of Dual Dipole and Slot Elements Used with Photomixers for Coherent Terahertz Output Power,” IEEE Trans. Microwave Theory Tech. 49, 1032–1038 (2001).
[CrossRef]

J. Appl. Phys. (8)

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7-d thin film strips,” J. Appl. Phys. 87, 7366–7375, (2000).
[CrossRef]

J. K. Luo, H. Thomas, D.V. Morgan, and D. Westwood, “Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing,” J. Appl. Phys. 79, 3622–3629 (1996).
[CrossRef]

J. Gyulai, J. W. Mayer, V. Rodriguez, A. Y. C. Yu, and H. J. Gopen, “Alloying Behavior of Au and Au-Ge on GaAs,” J. Appl. Phys. 42, 3578–3585, (1971).
[CrossRef]

Y-C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari, “Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs,” J. Appl. Phys. 62, 582–590, (1987).
[CrossRef]

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406–412 (1980).
[CrossRef]

N. P. Chen, H. J. Ueng, D. B. Janes, J. M. Woodall, and M. R. Melloch, “A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs,” J. Appl. Phys. 88, 309–315 (2000).
[CrossRef]

H. J. Ueng, N. P. Chen, D. B. Janes, K. J. Webb, D. T. McInturff, and M. R. Melloch, “Temperaturedependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts,” J. Appl. Phys. 90, 5637– 5641 (2001).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480–1484 (1993).
[CrossRef]

J. Lumin. (1)

X-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductor with femtosecond optics,” J. Lumin. 66, 488–492 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectronics Adv. Mat. (1)

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies of Ohmic Contact and Schottky Barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectronics Adv. Mat. 7, 3033– 3037 (2005).

J. Vac. Sci. Technol. B (1)

J. N. Randall, C. H. Yang, Y. C. Kao, and T. M. Moore, “Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors,” J. Vac. Sci. Technol. B 7, 2007–2010 (1989).
[CrossRef]

Japn. J. Appl. Phys. (1)

S. Kasai, M. Watanabe, and T. Ouchi, “Improved Terahertz Wave Intensity in Photoconductive Antennas Formed of Annealed Low-Temperature Grown GaAs,” Japn. J. Appl. Phys. 46, 4163–4165 (2007).
[CrossRef]

Phys. Rev. B (2)

D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, “Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL-2 like band,” Phys. Rev. B 42, 3578–3581 (1990).
[CrossRef]

N. Newman, M. van Schilgaarde, T. Kendelwicz, M.D. Williams, and W.E. Spicer, “Electrical study of Schottky barriers on atomically clean GaAs(110) surfaces,” Phys. Rev. B 33, 1146–1159 (1986).
[CrossRef]

Phys. Status Solidi A (1)

J. Wensorra, M. I. Lepsa, K. M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, and H. Lüth, “Ohmic contacts for GaAs based nanocolumns,” Phys. Status Solidi A 203, 3559–3564 (2006).
[CrossRef]

Solid-State Electron. (1)

N. Braslau, J. B. Gunn, and J. L. Staples, “Metal-Semiconductor Contacts For GaAs Bulk Effekt Devices,” Solid-State Electron. 10, 381–383 (1967).
[CrossRef]

Thin Solid Films (2)

J. D. Speight and K. Cooper, “Interlayer diffusion phenomena in Ti-Au metallization on n-type GaAs at 250°-450°C,” Thin Solid Films 25, S31–S37 (1975).
[CrossRef]

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III–V compound semiconductors,” Thin Solid Films 308–309, 599–606 (1997).
[CrossRef]

Other (8)

A. Krotkus, K. Bertulis, and R. Adomavicius, “Low temperature MBE grown GaAs for terahertz radiation application,” proc. 12th GAAS Symposium-Amsterdam (2004).

E. D. Marshall and M. Murakami, “in Contacts to semiconductor,” L.J. Brillson, ed. (Noyes Publication, New Jersey, 1993).

H. Kuchling, Taschenbuch der Physik (Fachbuchverlag Leipzig, 2001).

M. Mikulics, “Preparation and Optimization of Low-Temperature-Grown GaAs Photomixers,” PhD thesis, RWTH Aachen and FZ Jülich, (2005).

K. Sakai (ed), Terahertz Optoelectronics (Springer, Berlin, 2005).
[CrossRef]

F. Smith, “The device applications and characterization of nonstoichiometric GaAs grown by molecular beam epitaxy,” PhD thesis, MIT, Massachusetts, (1990).

N. Zamdmar, “The design and testing of integrated circuits for submillimeter wave spectroscopy,” PhD thesis, MIT, Massachusetts (1999).

M. Griebel, Ultraschnelle Ladungsträgerdynamik in LTG-GaAs und ErAs:GaAs-Übergittern-Grundlagen und Anwendungen, PhD thesis, MPI, Stuttgart, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Coherent detection setup: a second photoconductive antenna is used as detector. The excitation is performed either with the emission of two diode lasers or with femtosecond laser pulses. b) Incoherent detection scheme: a Golay cell is used as detector.

Fig. 2.
Fig. 2.

FIT simulation (CST microwave studio) of the antenna impedance RL

Fig. 3.
Fig. 3.

Equivalent electronic circuit diagram of the photomixer

Fig. 4.
Fig. 4.

Simulated spectral distribution of the power radiated by the photomixer.

Fig. 5.
Fig. 5.

Measured spectral distribution of the power radiated by the photomixer.

Fig. 6.
Fig. 6.

Output power of the antennas versus the bias electric field measured with the Golay cell.

Fig. 7.
Fig. 7.

Electric field radiated by the photomixer obtained via coherent detection.

Fig. 8.
Fig. 8.

Output power of the coplanar striplines under femtosecond illumination. The power is measured with the Golay cell.

Fig. 9.
Fig. 9.

THz waveforms obtained in a THz time-domain spectrometer. A second photoconductive antenna serves as detector.

Fig. 10.
Fig. 10.

Spectra of the THz waveforms presented in Fig. 9.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G 0 = ( μ e + μ h ) T opt η P ̅ opt e τ h v A ,
G eff = G 0 1 + G 0 R S .
R S = R tot R S G 0 + 1 G 0 + j ω C · ( 1 + R s G 0 ) .
R S = R tot G 0 1 R L .
P ω = 1 2 ( V B G 0 ) 2 R L ( 1 + ω 2 τ 2 ) ( 1 + ω 2 R L 2 C 2 ) 1 ( 1 + G 0 R S ) 2 .
P AuGe P Ti Au = ( 1 + Rs Ti Au G 0 1 + Rs AuGe G 0 ) 2 .
P AuGe P Ti Au = Rs Ti Au Rs AuGe = 2.35 ,

Metrics