Abstract

It is shown that a superlens with unmatched dielectric medium (termed as “unmatched superlens”, UMSL) can enable super-resolution imaging in a broad frequency range. The broadband UMSL comprises dielectric-metal-dielectric layers with appropriately designed thickness. Numerical simulations demonstrate that the deficiency of imaging due to the mismatched permittivity of the metal and dielectric can be improved with the existence of two waveguide modes of the UMSL structure. The frequency band and quality of super resolution imaging are mainly determined by the two modes, which deliver the amplitude and phase modulation of transmitted evanescent waves in a wide transversal wave-number range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. V. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  3. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).
  4. W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  6. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  7. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  8. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  9. K. J. Webb and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130-2132 (2006).
    [CrossRef] [PubMed]
  10. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  11. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Express 16, 4217-4227 (2008).
    [CrossRef] [PubMed]
  12. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
    [CrossRef]
  13. M. G. Moharam, D. A. Pomment, and E. B. Grann, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  14. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).

2008 (1)

2007 (1)

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

2006 (3)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

K. J. Webb and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130-2132 (2006).
[CrossRef] [PubMed]

2005 (2)

D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2003 (2)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1995 (1)

1968 (1)

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Akozbek, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Blaikie, R.

Bloemer, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

D’Aguanno, G.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Du, C.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

Gan, D.

Grann, E. B.

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

Luo, X.

Mattiucci, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Melville, D.

Moharam, M. G.

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pomment, D. A.

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

Scalora, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Veselago, V.

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Wang, C.

Webb, K. J.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Yang, M.

Yen, T. J.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett. (2)

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184 -5186 (2003).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near filed," J. Mod. Opt. 50, 1419-1430 (2003).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (2)

W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005).
[CrossRef]

M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a dielectric-metal-dielectric layer slab structure. The structure extends infinitely in the xy plane.

Fig. 2.
Fig. 2.

The image transfer function versus metal (Au) thickness with three different fixed SiC thicknesses (10 nm, 15 nm and 20 nm, respectively) for TM wave at an optical wavelength 633 nm.

Fig. 3.
Fig. 3.

(a). Calculated transmission factor (in logarithm scale) of a lens SiC/Au/SiC (15 nm/22 nm/15 nm, surrounded by air) versus the optical wavelength and the transverse incidence wavenumber. The white-dots lines ((1)–(3)) denote the wave-numbers of the half-pitch object with 110 nm, 80 nm, and 60 nm, respectively. (b) Transmission factor versus the transverse incidence wave-number and (c) the phase distribution of the transmission of this UMSL at six different optical wavelengths of 500, 560, 600, 633, 650 and 700 nm, respectively. Permittivity of Au is obtained from Drude model, and permittivity of SiC refers to Ref. [14].

Fig. 4.
Fig. 4.

Results of imaging 50nm width slit with the UMSL at five different wavelength ranging from 500nm to 700nm.

Fig. 5.
Fig. 5.

Images reconstructed with the UMSL at five different image planes which is away from the end face of the lens at 0, 10, 30, 50 and 80 nm, respectively. The object is a 50 nm line-width and center to center separation 160 nm illuminated by light of (a) 500 nm, (b) 600 nm.

Fig. 6.
Fig. 6.

Images reconstructed with the UMSL at different wavelengths, compared with the case of in free space image. The two slit sources are all 50 nm line-width, the center to center slit separation in (a) 220 nm, (b) 160 nm and (c) 120 nm.

Fig. 7.
Fig. 7.

Images reconstructed with the UMSL at four different wavelengths of 500, 560, 633, and 650 nm, respectively, compared with the case in free space image. The center to center separation are all 160 nm, the slit width are (a) 30, (b) 50, (c) 70 and (d) 110nm, respectively.

Fig. 8.
Fig. 8.

(a) and (c) are the original and suppressed phase curve of the two same slit sources with 50 nm width and center to center separation 160 nm at the wavelength of 670 and 700 nm. (b) and (d) are the corresponding images in free space and by the lens with and without the phase correction.

Metrics