Abstract

We present an experimental and theoretical study of the optical excitation of long-range surface polaritons supported by thin layers of amorphous silicon (a-Si). The large imaginary part of the dielectric constant of a-Si at visible and ultraviolet (UV) frequencies allows the excitation of surface polariton modes similar to long-range surface plasmon polaritons on metals. Propagation of these modes along considerable distances is possible because the electric field is largely excluded from the absorbing thin film. We show that by decreasing the thickness of the Si layer these excitations can be extended up to UV frequencies, opening the possibility to surface polariton UV optics compatible with standard Si technology.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970).
    [CrossRef]
  2. D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973).
    [CrossRef]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  4. W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  5. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
    [CrossRef]
  6. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  9. A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
    [CrossRef]
  11. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  12. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  13. J. C. Quail, J. G. Rako, and H. J. Simon,"Long-range surface-plasmon modes in silver and aluminum films," Opt. Lett. 8, 377-379 (1983).
    [CrossRef] [PubMed]
  14. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  15. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  16. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  17. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
    [CrossRef] [PubMed]
  18. F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).
  19. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
    [CrossRef]
  20. E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
    [CrossRef]
  21. M. Takabayashi, M. Haraguchi, and M. Fukui, "Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics," J. Opt. Soc. Am. B 12, 2406-2411 (1995).
    [CrossRef]
  22. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  23. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  24. M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
    [CrossRef]
  25. F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
    [CrossRef]
  26. E. Popov, S. Enoch, and M. Neviere, "Plasmon surface waves and complex-type surface waves: comparative analysis of single interfaces, lamellar gratings, and two-dimensional hole arrays," Appl. Opt. 46, 154-160 (2005).
    [CrossRef]
  27. M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
    [CrossRef]
  28. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  29. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  30. D. W. Lynch and W. R. Hunter, Handbook of optical costants of solids, E. D. Palik, ed., (Academic Press, New York, 1985).
  31. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006).
    [CrossRef] [PubMed]
  32. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
    [CrossRef] [PubMed]
  33. J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
    [CrossRef]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

2007 (3)

R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
[CrossRef] [PubMed]

J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

2006 (4)

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006).
[CrossRef] [PubMed]

F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
[CrossRef]

2005 (3)

E. Popov, S. Enoch, and M. Neviere, "Plasmon surface waves and complex-type surface waves: comparative analysis of single interfaces, lamellar gratings, and two-dimensional hole arrays," Appl. Opt. 46, 154-160 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

2004 (1)

2003 (3)

M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

2001 (2)

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

1996 (1)

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

1995 (1)

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

1990 (2)

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
[CrossRef] [PubMed]

F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

1983 (1)

1981 (1)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1973 (1)

D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973).
[CrossRef]

1970 (1)

R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970).
[CrossRef]

1969 (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

Berolo, E.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
[CrossRef] [PubMed]

Buckley, R.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Burstein, E.

D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973).
[CrossRef]

Charbonneau, R.

Chen, C.-H.

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

Chu, M.-W.

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

Deng, J.-P.

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

Dereax, A.

W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dereux, A.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ditlabacher, H.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Dostalek, J.

J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
[CrossRef]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T.W.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Economou, E. N.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Englman, R.

R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970).
[CrossRef]

Enoch, S.

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Fukui, M.

Garc’ia de Abajo, F. J.

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Ghaemi, H. F.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Goudomet, J. P.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Hangyo, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
[CrossRef]

Haraguchi, M.

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Kasry, A.

J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
[CrossRef]

Knoll, W.

J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Lacroute, Y.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Lamprecht, B.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Lisicka-Shrzek, E.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Mills, D. L.

D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973).
[CrossRef]

Miyamaru, F.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
[CrossRef]

Mou, C.-Y.

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

Neviere, M.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Popov, E.

Pudonin, F. A.

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

Quail, J. C.

Rako, J. G.

Ruppin, R.

R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Sambles, J. R.

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Sarrazin, M.

M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

Simon, H. J.

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Takabayashi, M.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Tanaka, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Vigneron, J.-P.

M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Weeber, J.-C.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Wolff, P. A.

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Wood, E. L.

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

Yakovlev, V.

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Steinberger, A. Hohenau, H. Ditlabacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," App. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

J. Mod. Phys. (1)

F. Yang, G. W. Bradberry, and J. R. Sambles, "Experimental observation of surface excitation-polaritons on vanadium using infrared radiation," J. Mod. Phys. 37, 1545-1553 (1990).

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereax, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

E. L. Wood, J. R. Sambles, F. A. Pudonin, and V. Yakovlev, "Degenerate long range surface modes, supported on thin nickel films," Opt. Commun. 132, 212-216 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. B (5)

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudomet, "Near-field observation of surface plasmon polariton propagation on thin metal film stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

M.-W. Chu, C.-H. Chen, F. J. Garc’ıa de Abajo, J.-P. Deng, and C.-Y. Mou, "Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime," Phys. Rev. B 77, 245402 (2008).
[CrossRef]

F. Miyamaru, M. Tanaka, and M. Hangyo, "Resonant electromagnetic wave transmission through strontium titanate hole arrays with complex surface waves," Phys. Rev. B 74, 115117 (2006).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Phys. Rev. E (1)

M. Sarrazin and J.-P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-Range Coupled Surface Exciton Polaritons," Phys. Rev. Lett. 64, 559-562 (1990).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Plasmonics (1)

J. Dostalek, A. Kasry, and W. Knoll, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics 2, 97-106 (2007).
[CrossRef]

Rep. Prog. Phys. (2)

R. Ruppin and R. Englman, "Optical phonons of small crystals," Rep. Prog. Phys. 33, 149-196 (1970).
[CrossRef]

D. L. Mills and E. Burstein, "Polaritons: the electromagnetic modes of media," Rep. Prog. Phys. 37, 817-926 (1973).
[CrossRef]

Science (1)

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

D. W. Lynch and W. R. Hunter, Handbook of optical costants of solids, E. D. Palik, ed., (Academic Press, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic representation of the electric field component along the x-direction of a long-range (red dashed curve) and of a short-range (blue solid curve) surface polariton in a thin layer of a material of permittivity ε surrounded by a dielectric of permittivity εd .

Fig. 2.
Fig. 2.

(a) real kr and (b) complex ki components of the wave number of long-range surface polaritons (blue solid curves) and short-range surface polaritons (red dashed curves) in a-Si films at λ0=318 nm as a function of the thickness of the film. The film is surrounded by a dielectric with a refractive index nd =√εd =1.45. kr and ki are normalized to the wave number in the surrounding dielectric. The black curve and the inset in (a) represent the normalized wave number of the TM0 mode in a non-absorbing thin film surrounded by a medium with nd =1.45. Inset of (b): wavelength dependence of the real (black curve) and imaginary (red curve) components of the permittivity of a-Si.

Fig. 3.
Fig. 3.

(a) LRSP propagation length Lx normalized by λ0 in a film of thickness d of gold (thick red curves) and silicon (thin blue curves) surrounded by a dielectric with refractive index nd =1.45. The solid curves correspond to λ0=318 nm, while the dashed curves are the calculations for λ0=650 nm. The inset represents a close view of Lx at λ0=318 nm for small values of d. (b) decay length of the field intensity Lz (normalized by λ0) in the dielectric for the same materials and wavelength as in (a). (c) Figure of merit of thin-film guiding structures defined as Lx/Lz for the same materials and wavelengths as in (a).

Fig. 4.
Fig. 4.

LRSP’s Poynting vector component tangential to an a-Si thin-film. The thickness of the a-Si is d=5 nm with permittivity ε=18.5i at λ0=318 nm, and the background is SiO2. Note that, for clarity, the scales for the SiO2 layer and the a-Si film are different.

Fig. 5.
Fig. 5.

(a) Side view image, made with a scanning electron microscope, of an a-Si thin film sputtered onto a SiO2 substrate and covered by a SiO2 layer.

Fig. 6.
Fig. 6.

(a) Measurements and (b) calculations of the reflected spectra of p-polarized light incident at an angle θ on the system formed by F2 glass, a SiO2 layer with a thickness of 500 nm, a 20 nm layer of a-Si and a SiO2 substrate.

Fig. 7.
Fig. 7.

Experimental (open circles and triangles) and theoretical (curves) reflectivity at λ0=375 nm of the system formed by F2 glass, a SiO2 layer with a thickness of 345 nm, an a-Si layer with a thickness of 13 nm and a SiO2 substrate. The green circles and solid black curve correspond to p-polarized light, while the blue triangles and red dashed curve correspond to s-polarized light.

Fig. 8.
Fig. 8.

(a) and (b) display the reflectivity at λ0=375 nm of a sample formed by a prism (n prism=1.67) on top of a SiO2 layer with a thickness of 300 nm, an a-Si layer with a thickness of 10 nm and a SiO2 substrate (n=1.48). The reflectivity is calculated for different values of the imaginary part (a) and the real part (b) of the permittivity of the thin layer. The full blue curves in (a) and (b) are calculated for ε=10.8+19.9i, i.e., the dielectric constant of a-Si at λ0=375 nm. In figure (a) ε=10.8+1.0i (red dashed curve) and ε=10.8+0.1i (green dot-dashed curve). In figure (b) ε=0+19.9i (red dashed curve) and ε=-10+19.9i (green dot-dashed curve). (c) Calculation of the magnetic field amplitude for a p-polarized beam (λ0=375 nm) incident at 62.9° onto the sample with the same dimensions as in (a) and (b). Magnetic field amplitude (red full curve) and x-component of the electric field (black dashed curve) at x=0 are shown in (d). Note that, for clarity, the SiO2 layer and the silicon film are scaled.

Tables (1)

Tables Icon

Table 1. Characteristic lenghts of long-range guided modes in a film with a thickness of 5 nm of amorphous Si and gold surrounded by a dielectric with refractive index nd =√εd =1.45. Calculated values of propagation length Lx and decay length Lz into the dielectric at three different wavelengths λ0=318, 450 and 650 nm. The permittivities of the materials at these wavelengths are also listed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H y ( x , y , z ) = A 1 e α d z e i ( k x ω t ) for z > d ,
H y ( x , y , z ) = [ A 2 e α z + A 3 e α z ] e i ( k x ω t ) for 0 z d ,
H y ( x , y , z ) = A 4 e α d z e i ( k x ω t ) for z < 0 ,
α d 2 = k 2 k 0 2 ε d ,
α 2 = k 2 k 0 2 ε ,
L z = 1 2 Re ( α d ) .
L x = 1 2 k i .
tanh [ α d 2 ] = ε α d ε d α .
tanh [ α d 2 ] = ε d α ε α d .

Metrics