Abstract

Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er3+ density 100×greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er 2O3 epitaxially grown on silicon. A peak Er3+ resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, Berlin, 2004).
  2. J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
    [CrossRef]
  3. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
    [CrossRef]
  4. P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
    [CrossRef]
  5. R. D. Kekatpure, A. R. Guichard, and M. L. Brongersma, "Free-carrier absorption in Si nanocrystals probed by microcavity photoluminescence," in Conference on Lasers and Electro-Optics (CLEO), p. CTuJ3 (Optical Society of America, San Jose, CA, 2008).
  6. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
    [CrossRef]
  7. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).
  8. R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986).
    [CrossRef]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  10. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
    [CrossRef]
  11. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
    [CrossRef]
  12. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
    [CrossRef]
  13. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  14. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
    [CrossRef] [PubMed]
  15. A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997).
    [CrossRef]
  16. H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
    [CrossRef]
  17. K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
    [CrossRef]
  18. S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
    [CrossRef]
  19. A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
    [CrossRef]
  20. K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
    [CrossRef]
  21. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, Inc., New York, 2002).
  22. P. B. Atanackovic, "Rare earth-oxides, rare earth-nitrides, rare earth-phosphides, and ternary alloys with silicon," U.S. Patent 7199015 (Dec. 28, 2004).
  23. R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
    [CrossRef]
  24. J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
    [CrossRef]
  25. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
    [CrossRef]
  26. R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
    [CrossRef]
  27. H. J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, and A. Fissel, "Molecular Beam Epitaxy of Rare-Earth Oxides," in Rare Earth Oxide Thin Films, M. Fanciulli and G. Scarel, eds. (Springer-Verlag, Berlin, 2007).
  28. The Er2O3(111) orientation is rotated 180. about the Si(111) surface normal.
  29. The short wavelengths (S), conventional (C), and long wavelengths (L) telecommunications windows (bands) are relative to the region of lowest optical loss in silica fiber (⌊¡Ö 1550 nm) and occur at 1460-1530 nm, 1530-1565 nm, and 1565-1625 nm, respectively. These designations are not strictly applied in this report as that the absorption extends into the E-band (extended, 1360-1460 nm) and the emission in Fig. 8 continues through the U-band (ultralong wavelengths, 1625-1675 nm).
  30. H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
    [CrossRef]
  31. H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001).
    [CrossRef]
  32. B. J. Ainslie, "A Review of the fabrication and properties of Erbium-doped fibers for optical amplifiers," IEEE J. Lightwave Technol. 9, 220-227 (1991).
    [CrossRef]
  33. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515 (2005).
    [CrossRef] [PubMed]
  34. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
    [CrossRef] [PubMed]
  35. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
    [CrossRef]
  36. J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
    [CrossRef]
  37. J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
    [CrossRef]
  38. The intrinsic loss rate (©i) and loss coefficient (〈i) are related through the material- and device-dependent group velocity (vg): 〈i = ©i/vg.
  39. M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
    [CrossRef]
  40. L. A. Riseberg and M. J. Weber, "Relaxation phenomena in rare-earth luminescence," in Progress in Optics, vol. XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976).
  41. L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968).
    [CrossRef]
  42. G. Schaack and J. A. Koningstein, "Phonon and electronic Raman spectra of cubic rare-earth oxides and isomorphous yttrium oxide," J. Opt. Soc. Am. 60, 1110-1115 (1970).
    [CrossRef]
  43. L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966).
    [CrossRef]
  44. D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
    [CrossRef]
  45. W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
    [CrossRef]
  46. M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  47. J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
    [CrossRef]
  48. R. J. Birgeneau, "Mechanisms of energy transport between rare-earth ions," Appl. Phys. Lett. 13, 193-195 (1968).
    [CrossRef]
  49. E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
    [CrossRef]
  50. N. Nikonorov, A. Przhevuskii, M. Prassas, and D. Jacob, "Experimental determination of the upconversion rate in erbium-doped silicate glasses," Appl. Opt. 38, 6284-6291 (1999).
    [CrossRef]
  51. P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003).
    [CrossRef]
  52. S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
    [CrossRef]
  53. P. Xie and S. C. Rand, "Continuous-wave, pair-pumped laser," Opt. Lett. 15, 848-850 (1990).
    [CrossRef] [PubMed]
  54. P. Xie and S. C. Rand, "Visible cooperative upconversion laser in Er:LiYF4," Opt. Lett. 17, 1198-1200 (1992).
    [CrossRef] [PubMed]
  55. M. Borselli, T. J. Johnson, and O. Painter, "Accurate measurement of scattering and absorption loss in microphotonic devices," Opt. Lett. 32, 2954-2956 (2007).
    [CrossRef] [PubMed]
  56. K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
    [CrossRef]
  57. K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
    [CrossRef]
  58. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
    [CrossRef]
  59. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996).
    [CrossRef] [PubMed]
  60. J. E. Heebner, T. C. Bond, and J. S. Kallman, "Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators," Opt. Express 15, 4452-4473 (2007).
    [CrossRef] [PubMed]
  61. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984).
  62. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, "Splitting of high- Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
    [CrossRef] [PubMed]
  63. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000).
    [CrossRef]
  64. K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
    [CrossRef]
  65. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  66. C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
    [CrossRef]
  67. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
    [CrossRef]
  68. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  69. The higher order quasi-TE modes have large bending losses (Q <100) and are poorly phase-matched to the taper waveguide. Since they cannot be observed in transmission or taper-collected PL, all necessary parameters are obtained through finite element simulations.
  70. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundementals and Technology, Optics and Photonics (Academic Press, San Diego, 1999).

2008 (2)

H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
[CrossRef]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

2007 (8)

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

J. E. Heebner, T. C. Bond, and J. S. Kallman, "Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators," Opt. Express 15, 4452-4473 (2007).
[CrossRef] [PubMed]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector," Opt. Express 15, 6044-6052 (2007).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, "Accurate measurement of scattering and absorption loss in microphotonic devices," Opt. Lett. 32, 2954-2956 (2007).
[CrossRef] [PubMed]

2006 (6)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

2005 (4)

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515 (2005).
[CrossRef] [PubMed]

2004 (6)

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
[CrossRef]

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003).
[CrossRef]

2002 (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

2001 (1)

H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

1997 (3)

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997).
[CrossRef]

1996 (1)

1995 (2)

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, "Splitting of high- Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

1992 (1)

1991 (1)

B. J. Ainslie, "A Review of the fabrication and properties of Erbium-doped fibers for optical amplifiers," IEEE J. Lightwave Technol. 9, 220-227 (1991).
[CrossRef]

1990 (1)

1986 (2)

S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
[CrossRef]

R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

1985 (1)

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

1982 (2)

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

1975 (1)

E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
[CrossRef]

1972 (1)

J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
[CrossRef]

1971 (1)

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1970 (1)

1968 (4)

R. J. Birgeneau, "Mechanisms of energy transport between rare-earth ions," Appl. Phys. Lett. 13, 193-195 (1968).
[CrossRef]

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968).
[CrossRef]

W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

1966 (2)

L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966).
[CrossRef]

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

1954 (1)

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie, "A Review of the fabrication and properties of Erbium-doped fibers for optical amplifiers," IEEE J. Lightwave Technol. 9, 220-227 (1991).
[CrossRef]

Alloing, B.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Assanto, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bae, B.-S.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
[CrossRef]

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Barros, M. R. X.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Birgeneau, R. J.

R. J. Birgeneau, "Mechanisms of energy transport between rare-earth ions," Appl. Phys. Lett. 13, 193-195 (1968).
[CrossRef]

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Bond, T. C.

Borselli, M.

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bowers, J. E.

Bruce, A. J.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Chang, D. B.

S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
[CrossRef]

Chang, N. C.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

Chen, K.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

Chen, S.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Chrystal, C.

Chu, S. T.

Cohen, O.

Colace, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Conway, J. G.

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

Davis, J. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

de Dood, M. J. A.

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

de Riedmatten, H.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Dexter, D. L.

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Duan, X.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Fan, Y. L.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Fang, A. W.

Fiore, A.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Gandrud, W. B.

W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

Gaspare, L. D.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Gates, J. V.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Ge, Y.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Gerardino, A.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Ghosh, R. N.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Gisin, N.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Gorodetsky, M. L.

Grishin, A. M.

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

Gruber, J. B.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

Hare, J.

Haroche, S.

Harris, J. S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Heebner, J. E.

Henderson, J. R.

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

Hennessy, K.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hu, E.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Ilchenko, V. S.

Isshiki, H.

H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
[CrossRef]

Jacob, D.

Jiang, Z. M.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Johansson, P.

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

Johnson, L. F.

L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966).
[CrossRef]

Johnson, T. J.

Jones, R.

Kallman, J. S.

Kamins, T. I.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Kasuya, A.

A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997).
[CrossRef]

Katsumata, T.

H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001).
[CrossRef]

Khartsev, S. I.

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

Kik, P. G.

P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003).
[CrossRef]

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Kikoin, K.

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

Kim, H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Kimerling, L. C.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

Kimura, T.

H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Kohl, P. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

Koningstein, J. A.

Kopf, L.

J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
[CrossRef]

Krishna, S.

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Kuo, Y.-H.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Larenzo, J.

R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Leavitt, R. P.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

Lee, K. H.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Lee, Y. K.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Lefevre-Seguin, V.

Li, L. H.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Little, B. E.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lunghi, L.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Martin, K. P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

Masaki, K.

K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
[CrossRef]

Masini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Masui, H.

E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
[CrossRef]

Meindl, J. D.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

Merkle, L. D.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

Michael, C. P.

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
[CrossRef] [PubMed]

Michel, J.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

Miller, D. A. B.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Moise, N. L.

S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
[CrossRef]

Monat, C.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Moos, H. W.

L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968).
[CrossRef]

Moos, H.W.

W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

Morrison, C. A.

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

Muramoto, M.

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

Nash, K. L.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Nikonorov, N.

Nykolak, G.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Okamoto, E.

E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
[CrossRef]

Ono, H.

H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, "Accurate measurement of scattering and absorption loss in microphotonic devices," Opt. Lett. 32, 2954-2956 (2007).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515 (2005).
[CrossRef] [PubMed]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Patel, C. S.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Pollack, S. A.

S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
[CrossRef]

Polman, A.

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

Prassas, M.

Pryamikov, A. D.

Przhevuskii, A.

Raday, O.

Raimond, J.-M.

Rajnak, K.

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Rand, S. C.

Ren, S.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Riseberg, L. A.

L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968).
[CrossRef]

Roberton, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Roth, J. E.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Saini, S.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Sandoghdar, V.

Sardar, D. K.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

Schaack, G.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Schulman, J. H.

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Sekita, M.

E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
[CrossRef]

Seo, S.-J.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Shin, J. H.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

Shmulovich, J.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Soref, R.

R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
[CrossRef]

Stintz, A.

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Suezawa, M.

A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997).
[CrossRef]

Suh, K.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

Sysak, M. N.

Tarasenko, O. V.

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

Ter-Gabrielyan, N.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Uitert, L. G. V.

L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966).
[CrossRef]

Ushiyama, T.

H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Valiev, U. V.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
[CrossRef]

Van Uitert, L. G.

J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
[CrossRef]

Vanin, E. V.

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

Weber, M. J.

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

Weiss, D. S.

Wong, Y. H.

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Xie, P.

Xu, R.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Xue, F.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Yang, X. J.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Young, I.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Zarkesh-Ha, P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

Zbinden, H.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

Zhu, Y. Y.

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

Zinoni, C.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Zwiller, V.

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (14)

R. J. Birgeneau, "Mechanisms of energy transport between rare-earth ions," Appl. Phys. Lett. 13, 193-195 (1968).
[CrossRef]

K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091102 (2007).
[CrossRef]

K. Srinivasan and O. Painter, "Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures," Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and antibunching experiments on single quantum dots at 1300 nm," Appl. Phys. Lett. 88, 131102 (2006).
[CrossRef]

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, "Wavelengthand material-dependent absorption in GaAs and AlGaAs microcavities," Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
[CrossRef]

A. M. Grishin, E. V. Vanin, O. V. Tarasenko, S. I. Khartsev, and P. Johansson, "Strong broad C-band roomtemperature photoluminescence in amorphous Er2O3 film," Appl. Phys. Lett. 89, 021114 (2006).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, "Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires," Appl. Phys. Lett. 89, 223102 (2006).
[CrossRef]

A. Kasuya and M. Suezawa, "Resonant excitation of visible photoluminescence form an erbium-oxide overlayer on Si," Appl. Phys. Lett. 71, 2728-2730 (1997).
[CrossRef]

H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, "Self-assembled infrared-luminescent Er-Si-O crystallites on silicon," Appl. Phys. Lett. 85, 4343-4345 (2004).
[CrossRef]

H. Ono and T. Katsumata, "Interfacial reactions between thin rare-earth-metal oxide films and Si substrates," Appl. Phys. Lett. 78(13), 1832-1834 (2001).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m," Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

P. G. Kik, M. J. A. de Dood, K. Kikoin, and A. Polman, "Excitation and deexcitation of Er3+ in crystalline silicon," Appl. Phys. Lett. 70, 1721-1723 (1997).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si," Appl. Phys. Lett. 72, 3175-3177 (1998).
[CrossRef]

IBM J. Res. & Dev. (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM J. Res. & Dev. 46, 245-263 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. J. Ainslie, "A Review of the fabrication and properties of Erbium-doped fibers for optical amplifiers," IEEE J. Lightwave Technol. 9, 220-227 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and J. Larenzo, "All-silicon active and passive guided-wave components for ⌊= 1.3 and 1.6 m," IEEE J. Quantum Electron. 22, 873-879 (1986).
[CrossRef]

Intel Tech. Jour. (1)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Roberton, S. List, I. Young, and K. Cadien, "On-chip optical interconnects," Intel Tech. Jour. 8, 129-141 (2004).

J. Appl. Phys. (3)

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, "Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3," J. Appl. Phys. 104(2), 023101 (2008).
[CrossRef]

P. G. Kik and A. Polman, "Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers," J. Appl. Phys. 93, 5008-5012 (2003).
[CrossRef]

S. A. Pollack, D. B. Chang, and N. L. Moise, "Upconversion-pumped infrared erbium laser," J. Appl. Phys. 60, 4077-4086 (1986).
[CrossRef]

J. Chem. Phys. (7)

J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. IV. C3i sites," J. Chem. Phys. 82, 5373-5378 (1985).
[CrossRef]

L. G. V. Uitert and L. F. Johnson, "Energy transfer between rare-earth ions," J. Chem. Phys. 44, 3514-3522 (1966).
[CrossRef]

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

W. B. Gandrud and H.W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

J. B. Gruber, J. R. Henderson, M. Muramoto, K. Rajnak, and J. G. Conway, "Energy levels of single-crystal erbium oxide," J. Chem. Phys. 45, 477-482 (1966).
[CrossRef]

N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare earth ions in Y2O3. I. Kramers ions in C2 sites," J. Chem. Phys. 76, 3877-3889 (1982).
[CrossRef]

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, "Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C2 sites," J. Chem. Phys. 76, 4775-4788 (1982).
[CrossRef]

J. Cryst. Growth (1)

R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, "Epitaxial growth of Er2O3 films on Si(001)," J. Cryst. Growth 277, 496-501 (2005).
[CrossRef]

J. Electron. Mater. (1)

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, "Er2O3 for high-gain waveguide ampli-fiers," J. Electron. Mater. 33, 809-814 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Mater. Res. Soc. Symp. Proc. (1)

J. V. Gates, A. J. Bruce, J. Shmulovich, Y. H. Wong, G. Nykolak, M. R. X. Barros, and R. N. Ghosh, "Fabrication of Er doped glass films as used in planar optical waveguides," Mater. Res. Soc. Symp. Proc. 392, 209-216 (1995).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Nature (London) (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature (London) 441, 960-963 (2006).
[CrossRef]

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature (London) 437, 1334-1336 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. (1)

K. Masaki, H. Isshiki, and T. Kimura, "Erbium-Silicon-Oxide crystalline films prepared by MOMBE," Opt. Mater. 27, 876-879 (2004).
[CrossRef]

Phys. Rev. (2)

M. J. Weber, "Radiative and multiphonon relaxation of rare-earth ions in Y2O3," Phys. Rev. 171, 283-291 (1968).
[CrossRef]

L. A. Riseberg and H. W. Moos, "Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals," Phys. Rev. 174, 429-438 (1968).
[CrossRef]

Phys. Rev. A (1)

K. Srinivasan and O. Painter, "Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity," Phys. Rev. A 75, 023814 (2007).
[CrossRef]

Phys. Rev. B (4)

E. Okamoto, M. Sekita, and H. Masui, "Energy transfer between Er3+ ions in LaF3," Phys. Rev. B 11, 5103-5111 (1975).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, "Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets," Phys. Rev. B 6, 615-623 (1972).
[CrossRef]

K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, "Photoluminescence measurements of quantum-dotcontaining semiconductor microdisk resonators using optical fiber taper waveguides," Phys. Rev. B 72, 205318 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Phys. Stat. Sol. A (1)

H. Isshiki, T. Ushiyama, and T. Kimura, "Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters," Phys. Stat. Sol. A 205, 52-55 (2008).
[CrossRef]

Other (12)

L. Pavesi and D. J. Lockwood, eds., Silicon Photonics (Springer-Verlag, Berlin, 2004).

H. J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, and A. Fissel, "Molecular Beam Epitaxy of Rare-Earth Oxides," in Rare Earth Oxide Thin Films, M. Fanciulli and G. Scarel, eds. (Springer-Verlag, Berlin, 2007).

The Er2O3(111) orientation is rotated 180. about the Si(111) surface normal.

The short wavelengths (S), conventional (C), and long wavelengths (L) telecommunications windows (bands) are relative to the region of lowest optical loss in silica fiber (⌊¡Ö 1550 nm) and occur at 1460-1530 nm, 1530-1565 nm, and 1565-1625 nm, respectively. These designations are not strictly applied in this report as that the absorption extends into the E-band (extended, 1360-1460 nm) and the emission in Fig. 8 continues through the U-band (ultralong wavelengths, 1625-1675 nm).

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, Inc., New York, 2002).

P. B. Atanackovic, "Rare earth-oxides, rare earth-nitrides, rare earth-phosphides, and ternary alloys with silicon," U.S. Patent 7199015 (Dec. 28, 2004).

R. D. Kekatpure, A. R. Guichard, and M. L. Brongersma, "Free-carrier absorption in Si nanocrystals probed by microcavity photoluminescence," in Conference on Lasers and Electro-Optics (CLEO), p. CTuJ3 (Optical Society of America, San Jose, CA, 2008).

L. A. Riseberg and M. J. Weber, "Relaxation phenomena in rare-earth luminescence," in Progress in Optics, vol. XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1976).

The intrinsic loss rate (©i) and loss coefficient (〈i) are related through the material- and device-dependent group velocity (vg): 〈i = ©i/vg.

The higher order quasi-TE modes have large bending losses (Q <100) and are poorly phase-matched to the taper waveguide. Since they cannot be observed in transmission or taper-collected PL, all necessary parameters are obtained through finite element simulations.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundementals and Technology, Optics and Photonics (Academic Press, San Diego, 1999).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Er2O3 Growth and Processing. (a) TEM image of Er2O3-Si interface. (b) XRD spectrum for Er2O3 on Si(111) and a reference Si(111) sample; the (★) peaks designate strained layers (see §A.1). (c) SEM image of Er2O3 microdisk edge prior to the SF6 undercut. (d) Hybrid Er2O3-Si microdisk (78 nm Er2O3, 188 nm Si, 1 µm SiOx) after the final HF undercut of the buried oxide.

Fig. 2.
Fig. 2.

Emission and absorption spectra. (a) Thin-film PL spectrum at 300 K and 8K while pumping at 981 nm. The dominant peaks at 8K are presented off the scale to make smaller features more visible. Emission is observed for ions on both C2 and C3i sites; the peaks at 1535.8 nm and 1548.6 nm correspond to the transition between the lowest Stark levels of the 4I 13/2 and 4I 15/2 manifolds on the C2 and C3i sites, respectively [24, 36, 37]. (b) Composite absorption spectrum. Different color ×’s correspond to the intrinsic linewidths for modes of different microdisks; the ★’s correspond to absorption peaks inferred from non-Lorentzian cavity resonances (see §A.3).

Fig. 3.
Fig. 3.

Upconversion behavior. (a,b) Fiber-taper collected Er2O3 upconversion spectrum while pumping at 1536.7 nm; spectroscopic identifications are made by comparison to known Er3+ transitions back to 4I 15/2 [24]. NB: the scale is varied across the spectrum to make weaker transitions more visible. The relative intensities in (a,b) may not reflect the actual strength of each transition because we are unable to correct for the unknown taper collection efficiency across the visible range. (c) Pump-power dependence for the integrated PL in the 550 nm, 670 nm, and 800 nm bands. The data sets are offset vertically for clarity. (d) Proposed upconversion path.

Fig. 4.
Fig. 4.

Measurement of 4I 13/2 lifetime. Pulse period measurement of the lifetime for C/Lband emission. Fitting the data in the shaded area gives a lifetime of 5.7±0.9 µs; this uncertainty and the dashed curves mark ±2σ confidence for the fit. Inset: sample histogram for a pulse period of 9.89 µs (101.1 kHz repetition rate).

Fig. 5.
Fig. 5.

Radiative efficiency of the 4I 13/2→4I 15/2 transition vs. absorbed pump power. The marker color indicates the pump-mode wavelength from blue (1460.9 nm) to dark red (1494.5 nm) while (∘) and (+) designate first- and second-order radial pump modes, respectively. Black markers represent data from devices on another wafer processed with wet chemical etching and using first- and second-order pump modes (spanning 1437.6–1490.9 nm). The inset shows green upconverted luminescence from a fundamental cavity mode.

Fig. 6.
Fig. 6.

Testing arrangements for measuring (a) cavity transmission spectra and visible upconversion, (b) C/L-band photoluminescence and radiative efficiency, and (c) 4I 13/2→4I 15/2 effective lifetime. Abbreviations: variable optical attenuator (VOA), fiber polarization controller (FPC), Mach-Zehnder interferometer (MZI), photodetector (PD), short-pass filter (SPF, pass 1460–1500 nm, reflect 1527–1610 nm), long-pass filter (LPF, pass 1527–1610 nm, reflect 1455–1500 nm), optical spectrum analyzer (OSA), digital communications analyzer (DCA), electro-optic modulator (EOM), and InGaAs/InP avalanche photodiode (APD). Black lines represent optical fiber; blue lines designate coaxial cable. Dashed lines correspond to alternative connections.

Fig. 7.
Fig. 7.

(a) Microdisk transmission spectrum for quasi-TE modes; the fundamental radial-order WGMs are highlighted (grey). (b) Sample Lorentzian fit. (c) Sample non-Lorentzian fit (solid line) of an asymmetric cavity resonance. The inferred absorption peak and a Lorentzian fit (dashed line) to the same data are also included.

Fig. 8.
Fig. 8.

Observed cavity-coupled photoluminescence spectrum for the device in Fig. 7(a); the fundamental WGMs are highlighted (grey).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

τ o τ rad = η scl = η obs β obs .
C up = 2 h c V λ p τ o 2 P up = ( 5.1 ± 2.1 ) × 10 16 cm 3 / s ,
d d t a cw = i Δ ω a cw 1 2 ( γ 1 + γ e ) a cw + κ s
T cav = 1 + i γ e ( a cw s ) 2 = 1 γ e i Δ ω + 1 2 ( γ 1 + γ e ) 2 .
γ i γ a ( ω ) = γ 0 ( δ ω a 2 ) 2 ( ω ω a ) 2 + ( δ ω a 2 ) 2
P a = γ a γ i P d P d = ( 1 T cav ) P in T t
P cav = 2 8 λ rbw T t [ n ( γ i , n + γ e , n γ e , n ) P n ( λ ) T f ( λ ) d λ ]
β = P c , T P f s , T + P c , T .
P T = 2 π ρ f ψ f H ̂ int ψ i 2 N Er ω i d ω i
P T = 2 π 3 ρ f E ( ω i ) 2 μ ( ω i ) 2 N Er ω i d ω i
ρ m = ρ fs ( ω i ) = V b ω i 2 n 3 π 2 c 3
E ( ω i ) = ω i 2 n 2 ε o V b
ρ m = ρ c ( ω i ) = j 2 L ( ω i , ω j , δ ω j )
E ( ω i ) j = ω i ϑ j 2 n 2 ε o V c , j
ϑ j = E j 2 E p 2 d V max ( E j 2 ) E p 2 d V
N 1 = N Er N 2 N 3
d N 2 d t = N 2 τ o C up N 2 2 + s Φ ( N 1 r N 2 )
d N 3 d t = N 3 τ o + 1 2 C up N 2 2 .

Metrics