Abstract

This investigation demonstrates the feasibility of the radial and azimuthal axially symmetric LC structure using double-side photoalignment in a dye-doped liquid crystal (DDLC) cell. A linear and linearly polarized beam is applied to a rotated DDLC cell to produce an axially symmetric LC alignment. Notably, double-sided photoalignment is performed at a temperature that is maintained just above the clear point. Conformation of the axially symmetric LC devices can be controlled by varying the polarization direction of the pumping light, and the simulation results correlate well with OR closely correspond to the experimental results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Ke, T.-H. Lin, and A. Y.-G. Fuh, "Tunable grating based on stressed liquid crystal," Opt. Express 16, 2062-2067 (2008).
    [CrossRef] [PubMed]
  2. M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
    [CrossRef]
  3. A. Y.-G. Fuh and T.-H. Lin, "Electrically switchable spatial filter based on polymer-dispersed liquid crystal film," J. Appl. Phys. 96, 5402-5404 (2004).
    [CrossRef]
  4. T.-H. Lin, Y. Huang, A. Y.-G. Fuh, and S.-T. Wu, "Polarization controllable Fresnel lens using dye-doped liquid crystals," Opt. Express 14, 2359-2364 (2006).
    [CrossRef] [PubMed]
  5. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  6. J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
    [CrossRef]
  7. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000).
    [CrossRef]
  8. R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
    [CrossRef]
  9. Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, "Axially-symmetric sheared polymer network liquid crystals," Opt. Express 13, 4638-4644 (2005).
    [CrossRef] [PubMed]
  10. H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114-1-051114-3 (2006).
    [CrossRef]
  11. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin "Axially symmetric polarization converters based on photo-aligned liquid crystal films," Opt. Express 16, 3768-3775(2008).
    [CrossRef] [PubMed]
  12. A. Niv, G. Biener, V. Kleiner and E. Hasman, "Manipulation of the pancharatnam phase in vectorial vortices," Opt. Express 14, 4208-4220 (2006).
    [CrossRef] [PubMed]
  13. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, "Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal," Opt. Express 15, 2900-2906 (2007).
    [CrossRef] [PubMed]
  14. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
    [CrossRef]

2008 (2)

2007 (1)

2006 (2)

2005 (1)

2004 (2)

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

A. Y.-G. Fuh and T.-H. Lin, "Electrically switchable spatial filter based on polymer-dispersed liquid crystal film," J. Appl. Phys. 96, 5402-5404 (2004).
[CrossRef]

2003 (1)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

2000 (1)

1999 (1)

J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
[CrossRef]

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
[CrossRef]

Andy, C.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Biener, G.

Cheng, K.-T.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Cottrell, D. M.

Davis, J. A.

Fu, T.-L.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

Hasman, E.

Huang, Y.

Jau, H.-C.

Ke, S.-W.

Kim, H.-R.

J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
[CrossRef]

Kleiner, V.

Lee, C.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Lee, J. H.

Lee, J.-H.

J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
[CrossRef]

Lee, M.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Lee, S.-D.

J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
[CrossRef]

Lin, L.-C.

Lin, T.-H.

Lin, Y. H.

McNamara, D. E.

Mo, T.-S.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Nie, X.

Niv, A.

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
[CrossRef]

Ren, H.

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
[CrossRef]

Sonehara, T.

Ting, C.-L.

Tzeng, Y.-Y.

Wang, J.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Wu, S. T.

Wu, S.-T.

Wu, Y. H.

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M.-R. Lee, J.-R. Wang, C.-R. Lee and AndyY.-G. Fuh, "Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films," Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

J.-H. Lee, H.-R. Kim, and S.-D. Lee, "Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter," Appl. Phys. Lett. 75, 859-860 (1999).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films," Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

J. Appl. Phys. (1)

A. Y.-G. Fuh and T.-H. Lin, "Electrically switchable spatial filter based on polymer-dispersed liquid crystal film," J. Appl. Phys. 96, 5402-5404 (2004).
[CrossRef]

Jpn. J. Appl. Phys (1)

R. Yamaguchi, T. Nose, and S. Sato, "Liquid crystal polarizers with axially symmetrical properties," Jpn. J. Appl. Phys., Part 1 28, 1730-1731 (1989).
[CrossRef]

Opt. Express (6)

Other (2)

H. Ren, Y. H. Lin, and S. T. Wu, "Linear to axial or radial polarization conversion using a liquid crystal gel," Appl. Phys. Lett. 89, 051114-1-051114-3 (2006).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sample fabrication setup.

Fig. 2.
Fig. 2.

(a). Schematic diagram of LC cell with double-sided axially symmetric radial LC structure; images of sample under (b) crossed polarizers, and (c) polarized optical microscope. P: polarizer, A: analyzer.

Fig. 3.
Fig. 3.

(a).–3(d). Measured T-V curves of axially symmetric radial LC sample from center to edge of ring marked in Figs. 3(e) A, B, C, and D, respectively.

Fig. 4.
Fig. 4.

(a). Schematic diagram of LC cell with double-sided axially-symmetric azimuthal LC structure; images of sample under the (b) crossed polarizers, and (c) polarized optical microscope. P: polarizer, A: analyzer.

Fig. 5.
Fig. 5.

(a).–5(d). Measured T-V curves of axially symmetric azimuthal LC sample from center to edge of ring marked in Figs. 5(e) A, B, C, and D, respectively.

Fig. 6.
Fig. 6.

Simulation of azimuthal cell.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( A x A y ) = R ( θ c ) · P · R ( θ c ) · ( A x A y ) ,

Metrics