Abstract

In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II–VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Xia, B. Gates, and S. H. Park, "Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared," J. Lightwave Technol. 17, 1956-1962 (1999).
    [CrossRef]
  2. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
    [CrossRef] [PubMed]
  3. S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
    [CrossRef]
  4. R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
    [CrossRef]
  5. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
    [CrossRef] [PubMed]
  6. M. F. Ali,  et al. "DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays," Anal. Chem. 75, 4732-4739 (2003).
    [CrossRef] [PubMed]
  7. B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
    [CrossRef]
  8. A. J. Shields, "Semiconductor quantum light sources," Nature Photon. 1, 215-223 (2007).
    [CrossRef]
  9. P. Michler, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  10. S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
    [CrossRef] [PubMed]
  11. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
    [CrossRef] [PubMed]
  12. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
    [CrossRef] [PubMed]
  13. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
    [CrossRef]
  14. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
    [CrossRef] [PubMed]
  15. L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
    [CrossRef] [PubMed]
  16. B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
    [CrossRef]
  17. X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
    [CrossRef]
  18. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
    [CrossRef]
  19. Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
    [CrossRef] [PubMed]
  20. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
    [CrossRef]
  21. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
    [CrossRef]
  22. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
    [CrossRef] [PubMed]
  23. J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
    [CrossRef] [PubMed]
  24. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
    [CrossRef]
  25. F. J. Arriagada and K. Osseo-Asare, "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration," J. Colloid Interface Sci. 211, 210-220 (1999).
    [CrossRef] [PubMed]
  26. P. L. Luisi, and B. E. Straub, Reverse Micelles (Plenum, New York, 1984).
  27. S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
    [CrossRef]
  28. M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
    [CrossRef]
  29. D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
    [CrossRef]
  30. J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
    [CrossRef] [PubMed]
  31. R. J. Mashl, N. Grǿnbech-Jensen, M. R. Fitzsimmons, M. Lütt, and D. Li, "Theoretical and experimental adsorption studies of polyelectrolytes on an oppositely charged surface," J. Chem. Phys. 110, 2219-2225 (1999).
    [CrossRef]
  32. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
    [CrossRef]

2008

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

2007

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

A. J. Shields, "Semiconductor quantum light sources," Nature Photon. 1, 215-223 (2007).
[CrossRef]

2006

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

2005

S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
[CrossRef]

M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
[CrossRef]

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

2004

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

2003

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

M. F. Ali,  et al. "DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays," Anal. Chem. 75, 4732-4739 (2003).
[CrossRef] [PubMed]

2002

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

2001

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

2000

J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

P. Michler, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

1999

Y. N. Xia, B. Gates, and S. H. Park, "Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared," J. Lightwave Technol. 17, 1956-1962 (1999).
[CrossRef]

R. J. Mashl, N. Grǿnbech-Jensen, M. R. Fitzsimmons, M. Lütt, and D. Li, "Theoretical and experimental adsorption studies of polyelectrolytes on an oppositely charged surface," J. Chem. Phys. 110, 2219-2225 (1999).
[CrossRef]

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

F. J. Arriagada and K. Osseo-Asare, "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration," J. Colloid Interface Sci. 211, 210-220 (1999).
[CrossRef] [PubMed]

1993

C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
[CrossRef]

Aizenberg, J.

J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
[CrossRef] [PubMed]

Akbulut, M.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

Ali, M. F.

M. F. Ali,  et al. "DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays," Anal. Chem. 75, 4732-4739 (2003).
[CrossRef] [PubMed]

Alivisatos, A. P.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Alivisatos, P.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

Arriagada, F. J.

F. J. Arriagada and K. Osseo-Asare, "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration," J. Colloid Interface Sci. 211, 210-220 (1999).
[CrossRef] [PubMed]

Bacher, G.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

Basche, T.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

Bawendi, M.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
[CrossRef]

Bechtel, H. A.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

Björk, M. T.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Boussert, B.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Braun, P. V.

J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
[CrossRef] [PubMed]

Brokmann, X.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Buil, S.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Bulovi, V.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

Buratoo, F. K.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Califano, M.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

Carson, P. J.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Chandrasekhar, V.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Chung, S.-W.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Coe, S.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

Cui, Y.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Dahan, M.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Darbandi, M.

M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
[CrossRef]

Dubertret, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Empedocles, S. A.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

Folks, L.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

Forchel, A.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

Franceschetti, A.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

Gates, B.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Y. N. Xia, B. Gates, and S. H. Park, "Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared," J. Lightwave Technol. 17, 1956-1962 (1999).
[CrossRef]

Gerion, D.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

Giacobino, E.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Ginger, D. S.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Golan, Y.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

Guo, W. Z.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Hermier, J.-P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Hermierb, J. P.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Hommel, D.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

Imamoglu, A.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Israelachvili, J.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

Johnson, M. B.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Keay, J. C.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

Klude, M.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

Kolb, U.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

Kraus, T.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Kristiansen, K.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

Lee, S. S.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

Li, J.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

Li, J. J.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Liddle, J. A.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Lounis, B.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

Lu, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Ma, L.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Mahler, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Malaquin, L.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Mashl, R. J.

R. J. Mashl, N. Grǿnbech-Jensen, M. R. Fitzsimmons, M. Lütt, and D. Li, "Theoretical and experimental adsorption studies of polyelectrolytes on an oppositely charged surface," J. Chem. Phys. 110, 2219-2225 (1999).
[CrossRef]

Mason, M. D.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

Mews, A.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

Michler, P.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

P. Michler, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

Min, Y.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

Mirkin, C. A.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Mishima, T. D.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Moerner, W. W.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

Morales, M. W.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Moser, A.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

Murray, C. B.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
[CrossRef]

Nann, T.

M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
[CrossRef]

Neuhauser, R.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

Norris, D. J.

C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
[CrossRef]

Orrit, M.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Osseo-Asare, K.

F. J. Arriagada and K. Osseo-Asare, "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration," J. Colloid Interface Sci. 211, 210-220 (1999).
[CrossRef] [PubMed]

Ouyang, J.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Ozkan, C. S.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Papaefthymiou, G. C.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

Park, S. H.

Peng, X. P.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Quelin, X.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Ratner, M. A.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Riess, W.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Schmid, H.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Selvan, S. T.

S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
[CrossRef]

Shields, A. J.

A. J. Shields, "Semiconductor quantum light sources," Nature Photon. 1, 215-223 (2007).
[CrossRef]

Shimizu, K.

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

Sönnichsen, C.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Spencer, N. D.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Spinicelli, P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Strauf, S.

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

Strouse, G. F.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Sun, S.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

Tan, T. T.

S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
[CrossRef]

Thomann, R.

M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
[CrossRef]

Tsai, C.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Tseng, R. J.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Wang, L.-W.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

Wang, Y. A.

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Weller, D.

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

Wiltzius, P.

J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
[CrossRef] [PubMed]

Wolf, H.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

Woo, W.-K.

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

Xia, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Xia, Y. N.

Xie, R.

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

Yang, Y.

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Yi, D. K.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

Yin, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

Ying, J. Y.

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
[CrossRef]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Zhang, Z.

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Zunger, A.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

Adv. Mater.

S. T. Selvan, T. T. Tan, and J. Y. Ying, "Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence," Adv. Mater. 17, 1620-1625 (2005).
[CrossRef]

S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Adv. Mater. 11, 1243-1256 (1999).
[CrossRef]

Anal. Chem.

M. F. Ali,  et al. "DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays," Anal. Chem. 75, 4732-4739 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermierb, "Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals," Appl. Phys. Lett. 85, 712-714 (2004).
[CrossRef]

Chem. Mater.

M. Darbandi, R. Thomann, and T. Nann, "Single quantum dots in silica spheres by microemulsion synthesis," Chem. Mater. 17, 5720-5725 (2005).
[CrossRef]

D. K. Yi, S. S. Lee, G. C. Papaefthymiou, and J. Y. Ying, "Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites," Chem. Mater. 18, 614-619 (2006).
[CrossRef]

Chem. Phys. Lett.

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. W. Moerner, "Photon antibunching in single CdSe/ZnS quantum dot fluorescence," Chem. Phys. Lett. 329, 399-404 (2000).
[CrossRef]

J. Am. Chem. Soc.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, "Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures," J. Am. Chem. Soc. 123, 8718-8729 (2001).
[CrossRef] [PubMed]

R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals," J. Am. Chem. Soc. 127, 7480-7488 (2005).
[CrossRef] [PubMed]

J. J. Li, Y. A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. P. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction," J. Am. Chem. Soc. 125, 12567-12575 (2003).
[CrossRef] [PubMed]

C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites," J. Am. Chem. Soc. 115, 8706-8715 (1993).
[CrossRef]

J. Chem. Phys.

R. J. Mashl, N. Grǿnbech-Jensen, M. R. Fitzsimmons, M. Lütt, and D. Li, "Theoretical and experimental adsorption studies of polyelectrolytes on an oppositely charged surface," J. Chem. Phys. 110, 2219-2225 (1999).
[CrossRef]

J. Colloid Interface Sci.

F. J. Arriagada and K. Osseo-Asare, "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration," J. Colloid Interface Sci. 211, 210-220 (1999).
[CrossRef] [PubMed]

J. Lightwave Technol.

Nano. Lett.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano. Lett.,  4, 1093-1098 (2004).
[CrossRef]

Nature

S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovi, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, 800-803 (2002).
[CrossRef] [PubMed]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and F. K. Buratoo, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000).
[CrossRef] [PubMed]

Nature Mater.

Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, "The role of interparticle and external forces in nanoparticle assembly," Nature Mater. 7, 527-538 (2008).
[CrossRef]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mater. 7, 659-664 (2008).
[CrossRef]

Nature Nanotech.

T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nature Nanotech. 2, 570-576 (2007).
[CrossRef]

R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan, and Y. Yang, "Digital memory device based on tobacco mosaic virus conjugated with nanoparticles," Nature Nanotech. 1, 72-77 (2006).
[CrossRef]

Nature Photon.

A. J. Shields, "Semiconductor quantum light sources," Nature Photon. 1, 215-223 (2007).
[CrossRef]

Phys. Rev. Lett.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Phys. Rev. Lett. 91, 056404 (2003).
[CrossRef] [PubMed]

S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, "Quantum optical studies on individual acceptor bound excitons in a semiconductor," Phys. Rev. Lett. 89, 177403 (2002).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Phys. Rev. Lett. 84, 2997-3000 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Science

P. Michler, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science 287, 1989-1992 (2000).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, "Quantization of multiparticle Auger rates in semiconductor quantum dots," Science 287, 1011-1013 (2000).
[CrossRef] [PubMed]

Small

S.-W. Chung, D. S. Ginger, M. W. Morales, Z. Zhang, V. Chandrasekhar, M. A. Ratner, and C. A. Mirkin, "Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits," Small 1, 64-69 (2005).
[CrossRef]

Other

P. L. Luisi, and B. E. Straub, Reverse Micelles (Plenum, New York, 1984).

Supplementary Material (4)

» Media 1: JPG (1572 KB)     
» Media 2: JPG (3118 KB)     
» Media 3: JPG (2312 KB)     
» Media 4: JPG (2802 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Media 1) Indirect self-assembly of surface-engineered nanoparticles. First, uniformly thick shells of optically transparent dielectric material (silica) are grown onto the nanoparticle “seeds” in microemulsion, which is illustrated here as CdSe-based core-shell colloidal QDs; then, the resulted composite particles, each containing a single QD, are individually anchored onto lithographically defined templates by electrostatic force self-assembly in solution.

Fig. 2.
Fig. 2.

(Media 2) Silica-encapsulated II–VI semiconductor colloidal QDs. a–d, Transmission electron microscope images of the synthesized silica-clad QDs with various total particle diameters of 28nm (a), 75nm (b), 95nm (c), and 180nm (d), obtained via microemulsion synthesis with NP-5 (a) and NP-12 (b–d) as the surfactants, respectively. Single QDs of about 8nm in diameter are visible at the core of the composite particles, appearing as small dark dots. The scale bars in the images correspond to 20nm (a) and 100nm (b–d). e,f, the synthesized silica-clad QDs (right, 180nm diameter) in cyclohexance under ambient (e) and UV (f) exposures. Bare QD controls (left) with similar concentration was used as a reference. g, photoluminescence spectra of the silica-clad QDs in cyclohexane (blue) and in ethanol (green), in comparison to the bare QD control (red), under the excitation at 380nm.

Fig. 3.
Fig. 3.

(Media 3) Electrostatic force self-assembly of the silica-encapsulated QDs at single-particle resolution. a–e, schematics of the process flow of the electrostatic force self-assembly, which starts off with patterning of the PMMA resist on silicon substrate by electron-beam lithography (a), followed by deposition of SiO2 film (20nm thick) by ionbeam sputtering (b) and assembly of a monolayer of polyelectrolyte (PDDA) molecules on the SiO2 surface by dip-coating (c). Lift-off of the PMMA film in acetone leads to PDDA covered SiO2 pad (d). Finally, immersion of the template into silica-clad QD ethanol solution results in spatially selective settlement of single silica-clad QD particle on each pad (e) via electrostatic interactions. f, scanning electron microscope image of a highly ordered array of individual silica-clad QDs formed by electrostatic force self-assembly. A small fraction of the particles are accidentally displaced from the target site, exposing the PDDA-covered SiO2 pad underneath. g–j, SEM image examples of EFSA results when the pad size is varied from 200nm (g), 250nm (h), 300nm (i) to 400nm (j). The diameter of the silica-clad QD is 220nm. The scale bar in (f)–(j) is 2µm.

Fig. 4.
Fig. 4.

(Media 4) Photon statistics measurement of the emission from single silicaencapsulated II–VI semiconductor colloidal QDs in self-assembled array. a, fluorescence image of an array of single silica-clad QDs captured by a confocal microscope. The particles reside on a square lattice with 2µm pitch. The scale bar is 10µm. b, a close-up fluorescence image of a 3×3 silica-clad QD array. The confocal excitation/detection geometry allows easy optical access to any individual silica-clad QD in the array. The scale bar is 2µm. c, the Hanbury-Brown and Twiss intensity correlation apparatus for photon statistics measurement of the QD emissions. The QDs are excited by a 2.5MHz pulsed diode source operating at 405nm. d,e, a typical photoluminescence intensity correlation histogram collected from a single silica-clad QD in the array at room temperature (d), in comparison to the similar data collected from a bare QD control (e). The number in the graph indicates the ratio of the area under the peak at zero time delay to the averaged area of the neighboring peaks.

Metrics