Abstract

Organically modified silica nanoparticles doped with Nile Red were synthesized and characterized. Silica encapsulation is relatively transparent for light and can protect hydrophobic Nile Red against denaturalization induced by the extreme bio-environment, making the entire nanoparticle hydrophilic and possess stable optical properties. The nanoparticles were conjugated with bio-molecules (such as apo-transferrin and folic acid), and our in vitro experiments revealed that these functionalized nanoparticles can serve as effective optical probes for specific targeting of cancer cells. As a preliminary study for future in vivo animal experiment, ORMOSIL nanoparticles were further co-conjugated with polyethyleneglycol (PEG) and apo-transferrin and the conjugates were also very good for in vitro targeting of HeLa cells. These bio-molecule functionalized ORMOSIL nanoparticles may serve as a robust tool for early diagnosis/therapy of cancer and other diseases.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Introduction to biophotonics, (Wiley-Interscience, New York 2003).
    [CrossRef]
  2. P. N. Prasad, Nanophotonics, (Wiley-Interscience, New York 2004).
    [CrossRef]
  3. I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
    [CrossRef] [PubMed]
  4. D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
    [CrossRef] [PubMed]
  5. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
    [CrossRef] [PubMed]
  6. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
    [CrossRef] [PubMed]
  7. T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
    [CrossRef] [PubMed]
  8. S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
    [CrossRef]
  9. S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
    [CrossRef]
  10. A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
    [CrossRef] [PubMed]
  11. M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
    [PubMed]
  12. X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
    [CrossRef]
  13. M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
    [CrossRef]
  14. T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
    [CrossRef]
  15. C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
    [CrossRef]
  16. J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
    [CrossRef] [PubMed]
  17. K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
    [CrossRef] [PubMed]
  18. H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
    [CrossRef]
  19. P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
    [CrossRef]
  20. W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
    [CrossRef]
  21. W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998).
    [CrossRef] [PubMed]
  22. Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002).
    [CrossRef]
  23. C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).
  24. Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
    [CrossRef]
  25. S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
    [CrossRef] [PubMed]
  26. X. Gao, Y, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechno. 22,969-976 (2004).
    [CrossRef]
  27. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
    [CrossRef]
  28. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
    [CrossRef]
  29. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
    [CrossRef] [PubMed]
  30. H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York 1957).
  31. G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
    [CrossRef] [PubMed]
  32. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and P. K. Hopkins, "Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex," Opt. Lett. 31,359-361 (2006).
    [CrossRef] [PubMed]
  33. K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
    [CrossRef]
  34. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
    [CrossRef] [PubMed]
  35. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
    [CrossRef]
  36. X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
    [CrossRef] [PubMed]

2008 (1)

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
[CrossRef] [PubMed]

2007 (7)

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

2006 (6)

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
[CrossRef] [PubMed]

K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
[CrossRef]

X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
[CrossRef] [PubMed]

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and P. K. Hopkins, "Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex," Opt. Lett. 31,359-361 (2006).
[CrossRef] [PubMed]

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

2005 (4)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

2004 (4)

X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
[CrossRef]

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

X. Gao, Y, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechno. 22,969-976 (2004).
[CrossRef]

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

2003 (2)

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

2002 (3)

Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002).
[CrossRef]

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

2001 (1)

C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).

2000 (1)

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

1998 (2)

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998).
[CrossRef] [PubMed]

1996 (1)

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

1995 (1)

M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
[PubMed]

Asher, S. A.

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Bagwe, R. P.

X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
[CrossRef]

Ballou, B.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

Bergey, E. J.

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Bergey, J. E.

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Berti, L.

K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
[CrossRef]

Bharali, D. J.

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Bogatyrev, V. A.

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

Bonoiu, A.

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

Bruchez, M. P.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Burns, A.

A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
[CrossRef] [PubMed]

Chan, W. C.

W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998).
[CrossRef] [PubMed]

Chan, W. C. W.

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

Chen, Y. H.

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

Chiu, J. F.

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

Cui, Y. P.

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

De, T. K.

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

Ding, H.

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

Dougherty, T. J.

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

Dutta, P.

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Dykman, L. A.

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
[CrossRef] [PubMed]

El-sayed, M. A.

X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
[CrossRef] [PubMed]

Ernst, L. A.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

Finegold, D.

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Gao, X.

X. Gao, Y, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechno. 22,969-976 (2004).
[CrossRef]

Ge, N.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Goswami, L. N.

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

Grote, J. G.

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

Haley, K. N.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

He, G. S.

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and P. K. Hopkins, "Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex," Opt. Lett. 31,359-361 (2006).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

He, Q. Y.

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

He, S.

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

Hopkins, P. K.

Huang, H.

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
[CrossRef] [PubMed]

Jain, T. K.

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

Jiang, W.

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

Kaur, N.

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Khanadeev, V. A.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
[CrossRef] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
[CrossRef] [PubMed]

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
[CrossRef] [PubMed]

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

Kim, K. S.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Kim, S.

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

Klejbor, I.

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Lagerholm, B. C.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

Lal, M.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Larson, J. P.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Law, W. C.

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

Leamon, C. P.

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).

Lee, H. H.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

Levy, L.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Lin, M. X.

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Lin, T. C.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

Liu, H.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Liu, J.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

Low, P. S.

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002).
[CrossRef]

C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

Lu, Y. J.

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002).
[CrossRef]

Ma, Z.

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

Maitra, A.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

Maitra, A. N.

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

Markowicz, P. P.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

Medintz, I. L.

K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
[CrossRef]

Melnikov, A. G.

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

Min, Y. H.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Mistretta, R. A.

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

Morgan, J.

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Nie, S.

W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998).
[CrossRef] [PubMed]

Ohulchanskyy, T. Y.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Oseroff, A. R.

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Ow, H.

A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
[CrossRef] [PubMed]

Pakatchi, S.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Pandey, R. K.

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

Peale, F.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Peteu, S. F.

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Prasad, P. N.

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and P. K. Hopkins, "Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex," Opt. Lett. 31,359-361 (2006).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Pudavar, H. E.

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

Qian, J.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

Reese, C. E.

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Roy, I.

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

Sapsford, K. E.

K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
[CrossRef]

Sega, E.

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

Shimada, M.

M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
[PubMed]

Shoji, N.

M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
[PubMed]

Singhal, A.

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

Stachowiak, E. K.

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Stachowiak, M. K.

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Su, Z.

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

Sun, H.

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

Sun, X.

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

Swihart, M. T.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

Takahashi, A.

M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
[PubMed]

Tan, W.

X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
[CrossRef]

Tramposch, K. M.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

Treadway, J. A.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Waggoner, A. S.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

Wang, C.

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

Wang, T.

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

Wang, X.

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

Wiesner, U.

A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
[CrossRef] [PubMed]

Wu, X.

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

Yang, P. H.

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

Yong, K. T.

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

Zhao, X.

X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
[CrossRef]

Zheng, J.

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

Zheng, Q.

Adv. Drug Del. Rev. (2)

Y. J. Lu and P. S. Low, "Folate-mediated delivery of macromolecular anticancer therapeutic agents," Adv. Drug Del. Rev. 54,675-693 (2002).
[CrossRef]

Y. J. Lu, E. Sega, C. P. Leamon, and P. S. Low, "Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential," Adv. Drug Del. Rev. 56,1161-1176 (2004).
[CrossRef]

Adv. Funct. Mater. (1)

C. Wang, Z. Ma, T. Wang, and Z. Su, "Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing," Adv. Funct. Mater. 16,1673-1678 (2006).
[CrossRef]

Adv. Mater. (2)

X. Zhao, R. P. Bagwe and W. Tan, "Development of organic-dye-doped silica nanoparticles in a reverse microemulsion," Adv. Mater. 16,173-176 (2004).
[CrossRef]

S. Kim, H. E. Pudavar, A. Bonoiu, and P. N. Prasad, "Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging," Adv. Mater. 19,3791-3795 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

S. A. Asher, S. F. Peteu, C. E. Reese, M. X. Lin, and D. Finegold, "Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids," Anal. Bioanal. Chem. 373,632-638 (2002).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations," Angew. Chem. Int. Ed. 45,4562-4588 (2006).
[CrossRef]

Anticancer Res. (1)

M. Shimada, N. Shoji, and A. Takahashi, "Enhanced efficacy of bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor," Anticancer Res. 15,109-116 (1995).
[PubMed]

Bioconjugate Chem. (2)

P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, "Transferrin-mediated gold nanoparticle cellular uptake," Bioconjugate Chem. 16,494-496 (2005).
[CrossRef]

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, "Noninvasive imaging of quantum dots in mice," Bioconjugate Chem. 15,79-86 (2004).
[CrossRef]

Chem. Mater. (3)

W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, "Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots," Chem. Mater. 18,4845-4854 (2006).
[CrossRef]

S. Kim, H. Huang, H. E. Pudavar, Y. P. Cui, and P. N. Prasad, "Intraparticle energy transfer and fluorescence photoconversion in nanoparticles: an optical highlighter nanoprobe for two-photon bioimaging," Chem. Mater. 19,5650-5656 (2007).
[CrossRef]

M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, "Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence," Chem. Mater. 12,2632-2639 (2000).
[CrossRef]

Chem. Soc. Rev. (1)

A. Burns, H. Ow, and U. Wiesner, "Fluorescent core-shell silica nanoparticles: towards "lab on a particle" architectures for nanobiotechnology," Chem. Soc. Rev. 35,1028-1042 (2006).
[CrossRef] [PubMed]

Drug Disc. Today. (1)

C. P. Leamon and P. S. Low, "Folate-mediated targeting: from diagnostics to drug and gene delivery," Drug Disc. Today. 6,44-51 (2001).

J. Am. Chem. Soc. (4)

X. Huang, I. H. El-Sayed, and M. A. El-sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128,2115-2120 (2006).
[CrossRef] [PubMed]

I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, J. E. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, "Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy," J. Am. Chem. Soc. 125,7860-7865 (2003).
[CrossRef] [PubMed]

S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, "Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy," J. Am. Chem. Soc. 129,2669-2675 (2007).
[CrossRef] [PubMed]

T. K. Jain, I. Roy, T. K. De, and A. N. Maitra, "Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier," J. Am. Chem. Soc. 120,11092-11095 (1998).
[CrossRef]

J. Colloid Interface Sci. (1)

N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and A. G. Melnikov, "Spectral extinction of colloidal gold and its biospecific conjugates," J. Colloid Interface Sci. 180,436-445 (1996).
[CrossRef]

J. Phys. Chem. B. (1)

J. Qian, K. T. Yong, I. Roy, T. Y. Ohulchanskyy, E. J. Bergey, H. H. Lee, K. M. Tramposch, S. He, A. Maitra, and P. N. Prasad, "Imaging pancreatic cancer using surface-functionalized quantum dots," J. Phys. Chem. B. 111,6969-6972 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. C. (1)

H. Ding, K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad, "Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging," J. Phys. Chem. C. 111,12552-12557 (2007).
[CrossRef]

Langmuir (1)

B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, "Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra," Langmuir 24,8964-8970 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5,709-711 (2005).
[CrossRef] [PubMed]

K. T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra, and P. N. Prasad, "Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells," Nano Lett. 7,761-765 (2007).
[CrossRef] [PubMed]

T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. H. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, "Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer," Nano Lett. 7,2835-2842 (2007).
[CrossRef] [PubMed]

Nat. Biotechno. (2)

X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots," Nat. Biotechno. 21,41-46 (2003).
[CrossRef]

X. Gao, Y, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechno. 22,969-976 (2004).
[CrossRef]

Nature (1)

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, "Observation of stimulated emission by direct three-photon excitation," Nature 415,767-770 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad, "Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery," Proc. Natl. Acad. Sci. U.S.A. 102,279-284 (2005).
[CrossRef] [PubMed]

D. J. Bharali, I. Klejbor, E. K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E. J. Bergey, P. N. Prasad, and M. K. Stachowiak, "Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain," Proc. Natl. Acad. Sci. U.S.A. 102,11539-11544 (2005).
[CrossRef] [PubMed]

Science (1)

W. C. Chan, and S. Nie, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection," Science 281,2016-2018 (1998).
[CrossRef] [PubMed]

Other (3)

P. N. Prasad, Introduction to biophotonics, (Wiley-Interscience, New York 2003).
[CrossRef]

P. N. Prasad, Nanophotonics, (Wiley-Interscience, New York 2004).
[CrossRef]

H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustration of our two routes for the bio-conjugation of ORMOSIL nanoparticles.

Fig. 2.
Fig. 2.

Schematic illustration of the setup for fluorescence imaging.

Fig. 3.
Fig. 3.

TEM pictures of Nile Red-doped and amino-group-functionalized ORMOSIL nanoparticles with four different average diameters (From A to D: 15 nm, 35 nm, 55 nm and 85 nm).

Fig. 4.
Fig. 4.

Fluorescence imaging pictures of (A) glass slide, (B) glass slide with Nile Red aggregate, (C) glass slide with the aggregate of Nile Red-doped ORMOSIL nanoparticles.

Fig. 5.
Fig. 5.

Experimental extinction (a), simulated extinction (b) and fluorescence emission spectra (c) of Nile Red in DMSO solution and the aqueous solution of Nile Red-loaded ORMOSIL nanoparticles. (d): Time trace of photoluminescence intensity of Nile Red-loaded ORMOSIL nanoparticles, which was excited by 532 nm-light (power density: ~10 mW/cm2) for half an hour.

Fig. 6.
Fig. 6.

Fluorescence imaging pictures of HeLa cells (Upper row) and COS-7 cells (Bottom row) treated with amino-group-functionalized nanoparticles. The panel on the left displays the transmission images of cells, and their corresponding fluorescence images are shown in the right panel. The scale bar is 50 µm.

Fig. 7.
Fig. 7.

Fluorescence imaging pictures of HeLa cells treated with non-bio-molecule-conjugated nanoparticles (Upper row), Tf-conjugated nanoparticles (Middle row), and FA-conjugated nanoparticles (Bottom row). The panel on the left displays the transmission images of cells, and their corresponding fluorescence images are shown in the right panel. The scale bar is 50 µm.

Fig. 8.
Fig. 8.

Fluorescence imaging pictures of COS-7 cells treated with Tf-conjugated nanoparticles (Upper row) and FA-conjugated nanoparticles (Bottom row). The panel on the left displays the transmission images of cells, and their corresponding fluorescence images are shown in the right panel. The scale bar is 50 µm.

Fig. 9.
Fig. 9.

Fluorescence imaging pictures of HeLa cell lines, treated separately with amino-group-functionalized (A), PEG-modified (B), PEG-GA-modified (C), and PEG-Tf-co-conjugated nanoparticles (D). The scale bar is 50 µm.

Metrics