Abstract

We report on an all-fiber femtosecond ytterbium laser without dispersion compensation consisting of all-normal dispersion fibers. Mode-locking was achieved by nonlinear polarization evolution in combination with additional amplitude modulation generated by a fiber-based spectral filter. The generated pulses were highly chirped and had a maximum pulse energy of 1.8 nJ. The output pulse duration was 7.6 ps and could be dechirped to 179 fs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22,316-318 (1997).
    [CrossRef] [PubMed]
  2. F. ¨ O. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 µm from a wave-breaking-free fiber laser," Opt. Lett. 28,1365-1367 (2003).
    [CrossRef] [PubMed]
  3. B. Ortac, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15,10725-10732 (2007), http://www. opticsinfobase.org/abstract.cfm?URI=oe-15-17-10725.
    [CrossRef] [PubMed]
  4. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, "All-fiber similariton laser at 1 m without dispersion compensation," Opt. Express 15, 6889-6893 (2007), http://www.opticsinfobase.org/ abstract.cfm?URI=oe-15-11-6889.
    [CrossRef] [PubMed]
  5. K. Kieu and F.W. Wise, "All-fiber normal-dispersion femtosecond laser," Opt. Express 16,11453-11458 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11453.
    [CrossRef] [PubMed]
  6. H. Lim, F. Ö. Ilday, and F.W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002), http://www.opticsinfobase.org/abstract.cfm? URI=oe-10-25-1497.
    [PubMed]
  7. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with photonic bandgap fiber for dispersion control," Opt. Lett. 32,1084-1086 (2007).
    [CrossRef] [PubMed]
  8. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, "Fiber taper for dispersion management in a mode-locked ytterbium fiber laser," Opt. Lett. 31,2257-2259 (2006).
    [CrossRef] [PubMed]
  9. I. Hartl, G. Imeshev, L. Dong, C. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America, 2005), paper CThG1.
  10. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi "Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation," Opt. Lett. 32,2372-2374 (2007).
    [CrossRef] [PubMed]
  11. P. Adel, M. Auerbach, C. Fallnich, and H. Welling, "Super-stretched mode-locked Yb3+-fiber laser with 33 nm bandwidth and 56 nJ pulse energy" in Advanced Solid State Lasers (ASSL), OSA Trends in Optics and Photonics Vol. 50, 221-223 (2001), paper TuA4-1.
  12. R. Herda and O. G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror" IEEE J. Quantum Electron. 40,893-899 (2004).
    [CrossRef]
  13. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
    [CrossRef]
  14. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor FabryPerot saturable absorber," Opt. Lett. 17,505-507 (1992).
    [CrossRef] [PubMed]
  15. R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
    [CrossRef]
  16. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006), http://www.opticsinfobase.org/abstract.cfm?URI= oe-14-21-10095.
    [CrossRef] [PubMed]
  17. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32,2408-2410 (2007).
    [CrossRef] [PubMed]

2008

2007

2006

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, "Fiber taper for dispersion management in a mode-locked ytterbium fiber laser," Opt. Lett. 31,2257-2259 (2006).
[CrossRef] [PubMed]

2004

R. Herda and O. G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror" IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

2003

1997

1992

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor FabryPerot saturable absorber," Opt. Lett. 17,505-507 (1992).
[CrossRef] [PubMed]

Asom, M. T.

Boyd, G. D.

Buckley, J. R.

Cautaerts, V.

Chiu, T. H.

Chong, A.

Clark, W. G.

Crittenden, P.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

Engelbrecht, M.

Ferguson, J. F.

Ghalmi, S.

Hanna, D. C.

Herda, R.

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, "Fiber taper for dispersion management in a mode-locked ytterbium fiber laser," Opt. Lett. 31,2257-2259 (2006).
[CrossRef] [PubMed]

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror" IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

Hideur, A.

Ilday, F. ¨ O.

Keller, U.

Kieu, K.

Kivistö, S.

Kracht, D.

Lim, H.

Limpert, J.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

Miller, D. A. B.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

Okhotnikov, O. G.

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, "Fiber taper for dispersion management in a mode-locked ytterbium fiber laser," Opt. Lett. 31,2257-2259 (2006).
[CrossRef] [PubMed]

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

R. Herda and O. G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror" IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

Ortac, B.

Paschotta, R.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

Prochnow, O.

Rafailov, E. U.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

Ramachandran, S.

Renninger, W. H.

Richardson, D. J.

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, "Stretched pulse Yb3+:silica fiber laser," Opt. Lett. 22,316-318 (1997).
[CrossRef] [PubMed]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

Ruehl, A.

Rusu, M.

Schmidt, O.

Schreiber, T.

Schultz, M.

Sibbett, W.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

Starodumov, A.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

Tünnermann, A.

Wandt, D.

Wise, F. W.

Wise, F.W.

Electron. Lett.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett.,  28,2226-2228 (1992).
[CrossRef]

IEEE J. Quantum Electron.

R. Herda and O. G. Okhotnikov, "Dispersion Compensation-Free Fiber Laser Mode-Locked and Stabilized by High-Contrast Saturable Absorber Mirror" IEEE J. Quantum Electron. 40,893-899 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, "Semiconductor Quantum-Dot Saturable Absorber Mode-Locked Fiber Laser," IEEE Photon. Technol. Lett. 18,157-159 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. Adel, M. Auerbach, C. Fallnich, and H. Welling, "Super-stretched mode-locked Yb3+-fiber laser with 33 nm bandwidth and 56 nJ pulse energy" in Advanced Solid State Lasers (ASSL), OSA Trends in Optics and Photonics Vol. 50, 221-223 (2001), paper TuA4-1.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006), http://www.opticsinfobase.org/abstract.cfm?URI= oe-14-21-10095.
[CrossRef] [PubMed]

O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, "All-fiber similariton laser at 1 m without dispersion compensation," Opt. Express 15, 6889-6893 (2007), http://www.opticsinfobase.org/ abstract.cfm?URI=oe-15-11-6889.
[CrossRef] [PubMed]

I. Hartl, G. Imeshev, L. Dong, C. C. Cho, and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America, 2005), paper CThG1.

H. Lim, F. Ö. Ilday, and F.W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002), http://www.opticsinfobase.org/abstract.cfm? URI=oe-10-25-1497.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the fiber ring cavity. SMF: single-mode fiber, WDM: wavelength division multiplexer, PC: polarization controller.

Fig. 2.
Fig. 2.

Transmission curve of the WDM used as spectral filter measured with a white light source.

Fig. 3.
Fig. 3.

(a) Measured output power in respect to pump power with a mode-locking threshold of 200mW; (b) The pulse train was measured with a fast photo diode.

Fig. 4.
Fig. 4.

(a) Radio-frequency spectrum; repetition frequency: f R ; resolution bandwidth: RBW; (b) Output spectrum on a linear scale measured at the NPE-port (black line) and at the 5% coupler (dashed red line).

Fig. 5.
Fig. 5.

(a) Autocorrelation function of the output pulses and dechirped output pulses [(b), black line]. Additionally, the bandwidth-limited autocorrelation function calculated by a fast Fourier transform of the optical spectrum is shown [(b), red, dashed curve].

Metrics