Abstract

A periodically poled lithium niobate (PPLN) waveguide-based single-pixel up-conversion infrared spectrometer was demonstrated. Sum-frequency generation between a 1.5-µm-band scanning pump laser and a 1.3-µm-band signal generated visible radiation which was detected by a silicon single-photon detector. The up-conversion spectrometer’s sensitivity was two-orders-of-magnitude higher than that of a commercial optical spectrum analyzer.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow noise up-conversion detector and spectrometer for the telecom band

Guo-Liang Shentu, Jason S. Pelc, Xiao-Dong Wang, Qi-Chao Sun, Ming-Yang Zheng, M. M. Fejer, Qiang Zhang, and Jian-Wei Pan
Opt. Express 21(12) 13986-13991 (2013)

Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector1

Lijun Ma, Oliver Slattery, and Xiao Tang
Opt. Express 17(16) 14395-14404 (2009)

217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector

Guo-Liang Shentu, Qi-Chao Sun, Xiao Jiang, Xiao-Dong Wang, Jason S. Pelc, M. M. Fejer, Qiang Zhang, and Jian-Wei Pan
Opt. Express 21(21) 24674-24679 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).
    [Crossref]
  2. Agilent, “Agilent 86140A Optical Spectrum Analyzer Family Technical Specifications,” http://www.home.agilent.com/upload/cmc_upload/All/5968-1124E.pdf.
  3. Princeton Instruments, “Spectroscopy Cameras OMAV,” http://www.piacton.com/products/speccam/omav/default.aspx.
  4. E. J. Heilweil, “Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiO3,” Opt. Lett. 14, 551–553 (1989).
    [Crossref] [PubMed]
  5. M. F. Decamp and A. Tokmakoff, “Up conversion multichannel infrared spectrometer,” Opt. Lett. 30, 1818–1820 (2005).
    [Crossref] [PubMed]
  6. C. Langrock, E. Diamantini, R. V. Roussev, H. Takesue, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-protonexchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  8. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

2008 (1)

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

2005 (2)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

1989 (1)

Agilent,

Agilent, “Agilent 86140A Optical Spectrum Analyzer Family Technical Specifications,” http://www.home.agilent.com/upload/cmc_upload/All/5968-1124E.pdf.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Decamp, M. F.

Diamantini, E.

Fejer, M. M.

Heilweil, E. J.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Kurimura, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

Langrock, C.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Roussev, R. V.

Stuart, B. H.

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).
[Crossref]

Takesue, H.

Tokmakoff, A.

Tovstonog, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

Wong, F. N. C.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

Yamamoto, Y.

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Opt. Lett. (3)

presented at the Conference on Lasers and Electro-Optics, San Jose, USA (1)

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved characterization of single photons by upconversion,” presented at the Conference on Lasers and Electro-Optics, San Jose, USA, 4–9, May, 2008.

Other (3)

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).
[Crossref]

Agilent, “Agilent 86140A Optical Spectrum Analyzer Family Technical Specifications,” http://www.home.agilent.com/upload/cmc_upload/All/5968-1124E.pdf.

Princeton Instruments, “Spectroscopy Cameras OMAV,” http://www.piacton.com/products/speccam/omav/default.aspx.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the waveguide-based single-pixel up-conversion spectrometer.

Fig. 2.
Fig. 2.

Spectrum detected by the OSA (a), and our up-conversion-based spectrometer at different EDFA current settings, 550 mA (b), 450 mA (c) and 275 mA (d) using a 100-ms integration time.

Fig. 3.
Fig. 3.

The measured laser-diode spectrum at different input signal levels; -90 dBm (a), -100 dBm (b), -110 dBm (c). The SPCM was set to integrate for 100 ms.

Metrics