Abstract

Low energy femtosecond laser pulses locally increase the refractive index and the hydro-fluoric acid etching rate of fused silica. These phenomena form the basis of a direct-write method to fabricate integrated glass devices that are of particular interest for optofluidics and optomechanical applications. Yet the underlying physical mechanism behind these effects remains elusive, especially the role of the laser polarization. Using Scanning Thermal Microscope and Raman spectrometer we observe in laser affected zones, a localized sharp decrease of the thermal conductivity correlated with an increased presence of low-number SiO2 cycles. In addition, we find that a high correlation exists between the amount of structural changes and the decrease of thermal conductivity. Furthermore, sub-wavelength periodic patterns are detected for high peak power exposures. Finally, our findings indicate that, to date, the localized densification induced by femtosecond laser pulses remains well below the theoretical value achievable in mechanically densified silica.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond Laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
    [CrossRef]
  4. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of High-Aspect Ratio, Micro-Fluidic Channels and Tunnels using Femtosecond Laser Pulses and Chemical Etching," Opt. Express 12, 2120-2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120.
    [CrossRef] [PubMed]
  5. C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
    [CrossRef]
  6. R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
    [CrossRef]
  7. Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  8. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8360.
    [CrossRef] [PubMed]
  9. J. W. Chan, T. Huser, S. Risbudand, and D. M. Krol, "Structural changes in fused silica after exposure to focused femtosecond laser pulses," Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  10. S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
    [CrossRef]
  11. D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Solids 354, 416-424 (2008).
    [CrossRef]
  12. Y. Bellouard, A. Said, and P. Bado, "Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica," Opt. Express 13, 6635-6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635.
    [CrossRef] [PubMed]
  13. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
    [CrossRef]
  14. A. Majumbar, "Scanning Thermal Microscopy," Annu. Rev. Mater. Sci. 29, 505-585 (1999).
    [CrossRef]
  15. D. M. Rayner, A. Naumov, and P. B. Corkum, "Ultrashort pulse non-linear optical absorption in transparent media," Opt. Express 13, 3208-3217 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3208.
    [CrossRef] [PubMed]
  16. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).
  17. X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
    [CrossRef]
  18. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  19. M. Tomozawa, Y. K. Lee, and Y. L. Peng, "Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy," J. Non-Cryst. Solids 242, 104-109 (1998).
    [CrossRef]
  20. A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
    [CrossRef]
  21. H. Sugiura and T. Yamadaya, "Raman-scattering in silica glass in the permanent densification region," J. Non-Cryst. Solids 144, 151-158 (1992).
    [CrossRef]
  22. N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
    [CrossRef]
  23. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, "Refracted Near-Field Measurements of Refractive Index and Geometry of Silica-on-Silicon Integrated Optical Waveguides," Appl. Opt. 37, 7268-7272 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-31-7268.
    [CrossRef]
  24. L. Zheng, J. C. Lambropoulos, and A. W. Schmid, "UV-laser-induced densification of fused silica: a molecular dynamics study," J. Non-Cryst. Solids 347, 144-152 (2004).
    [CrossRef]
  25. A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non-Cryst. Solids 209,166-174 (1997).
    [CrossRef]
  26. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
    [CrossRef] [PubMed]
  27. Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
    [CrossRef]

2008 (2)

R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
[CrossRef]

D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Solids 354, 416-424 (2008).
[CrossRef]

2006 (5)

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8360.
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

2005 (3)

2004 (2)

2003 (4)

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
[CrossRef]

2001 (2)

1999 (1)

A. Majumbar, "Scanning Thermal Microscopy," Annu. Rev. Mater. Sci. 29, 505-585 (1999).
[CrossRef]

1998 (2)

1997 (2)

A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non-Cryst. Solids 209,166-174 (1997).
[CrossRef]

X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

1996 (1)

1993 (1)

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

1992 (1)

H. Sugiura and T. Yamadaya, "Raman-scattering in silica glass in the permanent densification region," J. Non-Cryst. Solids 144, 151-158 (1992).
[CrossRef]

1965 (1)

V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

Agarwal, A.

A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non-Cryst. Solids 209,166-174 (1997).
[CrossRef]

Bado, P.

Barthel, E.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Bellouard, Y.

Bhardwaj, V. R.

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Champagnon, B.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Chan, J.W.

Colomb, T.

Corkum, P. B.

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

D. M. Rayner, A. Naumov, and P. B. Corkum, "Ultrashort pulse non-linear optical absorption in transparent media," Opt. Express 13, 3208-3217 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3208.
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Davis, K. M.

Demos, S. G.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
[CrossRef]

Depeursinge, C.

Du, D.

X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Dugan, M.

Funo, S.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

Gisin, B.

Gisin, N.

Grosvalet, L.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Hirao, K.

Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
[CrossRef]

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
[CrossRef]

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Huser, T.

Huttner, B.

Jiarong, Q.

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Juodkazis, S.

Kazanski, P. G.

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Kazansky, P. G.

Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
[CrossRef]

Keldysh, V.

V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

Kinoshita, M. J.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

Kitamura, N.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

Krol, D. M.

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
[CrossRef]

Lambropoulos, J. C.

L. Zheng, J. C. Lambropoulos, and A. W. Schmid, "UV-laser-induced densification of fused silica: a molecular dynamics study," J. Non-Cryst. Solids 347, 144-152 (2004).
[CrossRef]

Lee, Y. K.

M. Tomozawa, Y. K. Lee, and Y. L. Peng, "Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy," J. Non-Cryst. Solids 242, 104-109 (1998).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Majumbar, A.

A. Majumbar, "Scanning Thermal Microscopy," Annu. Rev. Mater. Sci. 29, 505-585 (1999).
[CrossRef]

Marcinkevicius, A.

Martinet, C.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Martinez, V.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Matsuo, S.

Mehandale, M.

Misawa, H.

Miura, K.

Miwa, M.

Mourou, G.

X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Naumov, A.

Nishii, J.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Oberson, P.

Peng, Y. L.

M. Tomozawa, Y. K. Lee, and Y. L. Peng, "Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy," J. Non-Cryst. Solids 242, 104-109 (1998).
[CrossRef]

Perriot, A.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Qiu, J.

Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
[CrossRef]

Rajeev, P. P.

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Rayner, D.M.

Risbudand, S.

Said, A.

Said, A. A.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Schmid, A. W.

L. Zheng, J. C. Lambropoulos, and A. W. Schmid, "UV-laser-induced densification of fused silica: a molecular dynamics study," J. Non-Cryst. Solids 347, 144-152 (2004).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
[CrossRef]

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
[CrossRef]

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Sugimoto, N.

Sugiura, H.

H. Sugiura and T. Yamadaya, "Raman-scattering in silica glass in the permanent densification region," J. Non-Cryst. Solids 144, 151-158 (1992).
[CrossRef]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
[CrossRef]

Taylor, R. S.

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, "Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures," Opt. Express 11, 775-781 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-775.
[CrossRef] [PubMed]

Toguchi, Y.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

Tomozawa, M.

M. Tomozawa, Y. K. Lee, and Y. L. Peng, "Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy," J. Non-Cryst. Solids 242, 104-109 (1998).
[CrossRef]

A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non-Cryst. Solids 209,166-174 (1997).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Vandembroucq, D.

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

Watanabe, M.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Yamadaya, T.

H. Sugiura and T. Yamadaya, "Raman-scattering in silica glass in the permanent densification region," J. Non-Cryst. Solids 144, 151-158 (1992).
[CrossRef]

Yamashita, H.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

Zheng, L.

L. Zheng, J. C. Lambropoulos, and A. W. Schmid, "UV-laser-induced densification of fused silica: a molecular dynamics study," J. Non-Cryst. Solids 347, 144-152 (2004).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

A. Majumbar, "Scanning Thermal Microscopy," Annu. Rev. Mater. Sci. 29, 505-585 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

C. Hnatovsky, V. R. Bhardwaj, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Appl. Phys. A: Mater. Sci. Proc. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A: Mater. Sci. Proc. 77, 109-111 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett. 82, 3230-3232 (2003).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of Fused Silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, "Laser Ablation and Micromachining with Ultrashort Laser Pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, and B. Champagnon, "Raman microspectroscopic characterization of amorphous silica plastic behavior," J. Am. Ceram. Soc. 89, 596-601 (2006).
[CrossRef]

J. Non-Cryst. Solids (6)

H. Sugiura and T. Yamadaya, "Raman-scattering in silica glass in the permanent densification region," J. Non-Cryst. Solids 144, 151-158 (1992).
[CrossRef]

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. J. Kinoshita, "Refractive-index of densified silica glass," J. Non-Cryst. Solids 159, 241-245 (1993).
[CrossRef]

D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Solids 354, 416-424 (2008).
[CrossRef]

L. Zheng, J. C. Lambropoulos, and A. W. Schmid, "UV-laser-induced densification of fused silica: a molecular dynamics study," J. Non-Cryst. Solids 347, 144-152 (2004).
[CrossRef]

A. Agarwal and M. Tomozawa, "Correlation of silica glass properties with the infrared spectra," J. Non-Cryst. Solids 209,166-174 (1997).
[CrossRef]

M. Tomozawa, Y. K. Lee, and Y. L. Peng, "Effect of uniaxial stresses on silica glass structure investigated by IR spectroscopy," J. Non-Cryst. Solids 242, 104-109 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Shimotsuma, K. Hirao, P. G. Kazansky, and J. Qiu, "Three-Dimensional Micro- and Nano-Fabrication in Transparent Materials by Femtosecond Laser," Jpn. J. Appl. Phys. 44, 4735-4748 (2005).
[CrossRef]

Laser Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, "Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass," Laser Photon. Rev. 2, 26-46 (2008). doi: 10.1002/lpor.200710031
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazanski, Q. Jiarong, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical micrograph of the Laser Affected zones as function of polarization (20 X Bright field image, transmission lighting). LAZs appear as bright spots. Note the lack of wave-guiding properties for the track written in transverse polarization at power higher than 5 J/cm2 and the weak waveguiding properties above 4.5 J/cm2 for the longitudinal polarization.

Fig. 2.
Fig. 2.

Typical conductivity data from a laser-affected zone. Topography and probe current variation are acquired simultaneously. Although invisible on the topographic map, the laser-affected zone is clearly identifiable on the thermal conductivity map. The probe current signal indicates a lower thermal conductivity in the laser affected zone.

Fig. 3.
Fig. 3.

Set of conductivity map (bottom images) and their corresponding topographic images on a specimen exposed to femtosecond laser light longitudinally polarized and with progressively higher intensity pulses. The contours of the LAZ extracted from the SThM information have been added (light blue contour) on the topology map to emphasize that LAZ do not produce noticeable changes on the specimen topography.

Fig. 4.
Fig. 4.

Selection of SThM and simultaneous topographic images of patterns exposed to pulses with transverse polarization. The horizontal black zones spanning across some of the scan corresponds to a surface scratch (all but 2.5 and 3.5 J/cm2) as revealed by the topographical map. The contours of the LAZ extracted from the SThM information have been added (light blue contour) on the topology map to emphasize that LAZ do not produce noticeable changes on the specimen topography.

Fig. 5.
Fig. 5.

Relative variation of SThM probe currents as a function of fluence, for two different polarizations: longitudinal (top graph) and transverse (bottom graph).

Fig. 6.
Fig. 6.

SThM analysis of a high energy pattern (7.5 J/cm2) obtained with a transverse polarization. Left: topography and corresponding scanning contrast measurement. Oblique regular striation results from polishing. Right: probe current variation across the scan width. Each profile is averaged over a window spanning across 2 um in the vertical direction.

Fig. 7.
Fig. 7.

Raman spectra of raw silica and a mechanically densified fused silica (left) and Raman spectra of the laser affected zone compared to a Raman spectra in pristine zone of the material (Right).

Fig. 8.
Fig. 8.

Raman spectra for transverse (left) and longitudinal polarization (right): intensity variation of peaks D1 and D2 normalized to the 800 cm-1 band intensity as a function of laser fluence. “Ref” is a reference measurement made in pristine zones (i.e. not exposed to the laser beam) of the specimens.

Fig. 9.
Fig. 9.

The D2 peak and the 800 cm-1 band in Raman spectra measured for two different polarizations and two characteristic fluence levels. For clarity the 7.5 J/cm2 spectra were offset vertically by 25 intensity units to avoid superposition with the 4.5 J/cm2 spectra. The near perfect superposition of the peaks for transverse polarization on the one hand and longitudinal polarization on the other hand illustrate the typical reproducibility of the Raman characterization. “Ref” is a reference measurement made in a pristine zone (unexposed to the laser beam) of the same specimen.

Fig. 10.
Fig. 10.

Illustration of laser affected zones observed with different microscope. LAZ patterns were written with a longitudinal polarization and a fluence of 2.5-3 J/cm2 under the same exposure conditions described in this paper.

Fig. 11.
Fig. 11.

Averaged thermal conductivity profiles across various regions on the laser affected zone consisting of 15 adjacent single laser patterns. Note the sharp drop resulting from the presence of the half-circular crack (top profile).

Metrics