Abstract

Two independent significant developments have challenged our understanding of light-matter interaction, one, involves the artificially structured materials known as metamaterials, and the other, relates to the coherent control of quantum systems via the quantum interference route. We theoretically demonstrate that one can engineer the electromagnetic response of composite metamaterials using coherent quantum interference effects. In particular, we predict that these composite materials can show a variety of effects ranging from dramatic reduction of losses to switchable ultraslow-to-superluminal pulse propagation. We propose parametric control of the metamaterials by active tuning of the capacitance of the structures, which is most efficiently engineered by embedding the metamaterial structures within a coherent atomic/molecular medium. This leads to dramatic frequency dependent features, such as significantly reduced dissipation accompanied by enhanced filling fraction. For a Split-ring resonator medium with magnetic properties, the associated splitting of the negative permeability band can be exploited for narrow band switching applications at near infrared frequencies involving just a single layer of such composite metamaterials.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 - 521 (2005).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
    [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006).
    [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
    [CrossRef] [PubMed]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
    [CrossRef] [PubMed]
  8. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
    [CrossRef] [PubMed]
  9. F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
    [CrossRef] [PubMed]
  10. Q1. V. M. Shalaev, "Optical negative index metamaterials," Nature Photon. 1, 41- 48 (2007).
    [CrossRef]
  11. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36 - 42 (1997).
    [CrossRef]
  12. S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
    [CrossRef] [PubMed]
  13. K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
    [CrossRef] [PubMed]
  14. M. O. Scully and M. S. Zubairy, Quantum Optics Cambridge Univ. Press, Cambridge, U.K. (1997).
  15. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
    [CrossRef]
  16. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
    [CrossRef] [PubMed]
  17. M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855 - 1858 (1991).
    [CrossRef] [PubMed]
  18. Q2. G. S. Agarwal and Harshawardhan Wanare, "Inhibition and enhancement of two photon absorption," Phys. Rev. Lett. 77, 1039 - 1042 (1996).
    [CrossRef] [PubMed]
  19. S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002).
    [CrossRef]
  20. N. G. Kalugin and Y. V. Rostovtsev, "Efficient generation of short terahertz pulses via stimulated Raman adiabatic passage," Opt. Lett. 31, 969 - 971 (2006).
    [CrossRef] [PubMed]
  21. J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992).
    [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972).
    [CrossRef]
  23. W. Vassen, "Laser cooling and trapping of metastable helium: towards Bose-Einstein condensation," Comptes Rendus de l’Academie des Sciences Series IV - Physics 2, 613-618 (2001).
  24. F. S. Pavone, G. Bianchini, F. S. Cataliotti, T.W. H¨ansch, and M. Inguscio, "Birefringence in electromagnetically induced transparency," Opt. Lett. 22, 736 - 738 (1997).
    [CrossRef] [PubMed]
  25. Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
    [CrossRef]

2008

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

2007

Q1. V. M. Shalaev, "Optical negative index metamaterials," Nature Photon. 1, 41- 48 (2007).
[CrossRef]

2006

2005

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 - 521 (2005).
[CrossRef]

2002

S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002).
[CrossRef]

2001

W. Vassen, "Laser cooling and trapping of metastable helium: towards Bose-Einstein condensation," Comptes Rendus de l’Academie des Sciences Series IV - Physics 2, 613-618 (2001).

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

1997

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

Q2. G. S. Agarwal and Harshawardhan Wanare, "Inhibition and enhancement of two photon absorption," Phys. Rev. Lett. 77, 1039 - 1042 (1996).
[CrossRef] [PubMed]

1992

J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992).
[CrossRef] [PubMed]

1991

M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855 - 1858 (1991).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
[CrossRef] [PubMed]

1990

S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972).
[CrossRef]

Agarwal, G. S.

Q2. G. S. Agarwal and Harshawardhan Wanare, "Inhibition and enhancement of two photon absorption," Phys. Rev. Lett. 77, 1039 - 1042 (1996).
[CrossRef] [PubMed]

Averitt, R. D.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Azad, A. K.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

Bianchini, G.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
[CrossRef] [PubMed]

Caplin, D.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Cataliotti, F. S.

Chen, H.-T.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972).
[CrossRef]

Cohen, L. F.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
[CrossRef] [PubMed]

Fyson, J.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Gilderdale, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

H¨ansch, T.W.

Hajnal, J. V.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36 - 42 (1997).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
[CrossRef] [PubMed]

Inguscio, M.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972).
[CrossRef]

Kalugin, N. G.

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
[CrossRef] [PubMed]

Larkman, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

Mackinnon, A.

J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992).
[CrossRef] [PubMed]

Magnus, F.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Moore, J.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Morrison, K.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

O’Brien, S.

S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002).
[CrossRef]

O’Hara, J. F.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Padilla, W. J.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

Pavone, F. S.

Pendry, J. B.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002).
[CrossRef]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992).
[CrossRef] [PubMed]

Perkins, G.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 - 521 (2005).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
[CrossRef]

Rostovtsev, Y. V.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855 - 1858 (1991).
[CrossRef] [PubMed]

Shalaev, V. M.

Q1. V. M. Shalaev, "Optical negative index metamaterials," Nature Photon. 1, 41- 48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Shrekenhamer, D. B.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

Taylor, A. J.

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Vassen, W.

W. Vassen, "Laser cooling and trapping of metastable helium: towards Bose-Einstein condensation," Comptes Rendus de l’Academie des Sciences Series IV - Physics 2, 613-618 (2001).

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

Wood, B.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Young, I. R.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

Comptes Rendus de l’Academie des Sciences Series IV - Physics

W. Vassen, "Laser cooling and trapping of metastable helium: towards Bose-Einstein condensation," Comptes Rendus de l’Academie des Sciences Series IV - Physics 2, 613-618 (2001).

IEEE Trans. Microwave Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 - 2084 (1999).
[CrossRef]

J. Phys.: Condens. Matter

S. O’Brien and J. B. Pendry,"Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter 14, 6383 - 6394 (2002).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 - 598 (1999).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain assisted superluminal light propagation," Nature 406, 277 - 279 (2000).
[CrossRef] [PubMed]

Nature Materials

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c magnetic metamaterial," Nature Materials 7, 295 - 297 (2008).
[CrossRef] [PubMed]

Nature Photon.

Q1. V. M. Shalaev, "Optical negative index metamaterials," Nature Photon. 1, 41- 48 (2007).
[CrossRef]

Q3. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon. 2, 295 - 298 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals" Phys. Rev. B 6, 4370 - 4379 (1972).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry and A. Mackinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772 - 2775 (1992).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 - 1110 (1990).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris,"Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 - 2596 (1991).
[CrossRef] [PubMed]

M. O. Scully, "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett. 67, 1855 - 1858 (1991).
[CrossRef] [PubMed]

Q2. G. S. Agarwal and Harshawardhan Wanare, "Inhibition and enhancement of two photon absorption," Phys. Rev. Lett. 77, 1039 - 1042 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 - 4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773 - 4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

Phys. Today

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36 - 42 (1997).
[CrossRef]

Rep. Prog. Phys.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 - 521 (2005).
[CrossRef]

Science

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in in magnetic resonance imaging," Science 291, 849 - 851 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 - 1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Other

M. O. Scully and M. S. Zubairy, Quantum Optics Cambridge Univ. Press, Cambridge, U.K. (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic pictures highlighting the principle behind the proposed controllable metamaterials realized by embedding a resonant medium within the metamaterial design. (a) The composite Split-ring resonators with resonant material embedded within the capacitive gaps can be thought of as resonantly driven LC circuits as shown in (c), where the capacitance can be manipulated by external applied fields. Examples of such controllable resonant media are given at the top: Λ-level structure of a resonant atomic medium on the left and the level structure of a molecule with an appropriate Raman transition on the right; (b) The dielectric permittivity experienced by the probe field for these cases of an embedded medium with a single resonance (Raman medium) and an embedded EIT medium (with zero absorption at the line center) are shown in the top right panel as a function of Δ/γ=(ω-ω0)/γ.

Fig. 2.
Fig. 2.

(a) The real (black line) and imaginary (dashed-blue line) parts of the effective magnetic permeability obtained when the capacitive gaps of the SRR are embedded with a resonant Raman medium. The dashed red curve shows Re(µ eff) for the bare SRR medium, to be contrasted with the transformed response due to the resonant Raman medium (black curve). (b) The computed band-structure for the bare (red circles) and the composite SRR medium with an embedded Raman medium (black squares) whose γ 13=2.4 THz. The bandgap associated with µ eff<0 for the bare SRR is shown as cross-hatched regions on the right, whereas the bandgaps due to the inclusion of the Raman medium in the SRR are shown as the two hatched regions on the left. The blue lines indicate the dispersion predicted by the (approximate) analytic formulae. (c) The real (black line) and imaginary (dotted-red line) parts of µ eff of the composite SRR medium when an EIT medium is embedded in the capacitive gaps. For the EIT medium, ω 1=ω m=74.9THz, γ 13=0.24GHz and Ωc=2.4THz. The resonance linewidths are much narrower than that of the bare SRR medium indicating reduced dissipation. (d) The dissipation parameter Γm (black), and the filling fraction fm (dash-dotted red line) for the µ eff shown in (c). The reduced dissipation as well as the filling fraction can be contrasted with the bare SRR levels indicated by the dotted blue and dashed dark green lines, respectively.

Fig. 3.
Fig. 3.

Left: The level structure diagram of the relevant levels involved in EIT for metastable helium. Right: The unit cell of the SRR metamaterial made of silver and resonant (ω 1) at about 272 THz and immersed within a near-resonant controllable EIT medium (metastable helium gas). The metamaterial response shown in Fig. 4 corresponds to the composite SRR structures of the dimensions shown above.

Fig. 4.
Fig. 4.

Computed bandstructures (a, b) of a SRR metamaterial with the unit cell shown in Fig. 3 (right) and submersed in metastable helium gas. The reflectance (black) and transmittance (dashed red) are shown in (c, d) from a slab of one layer of the composite SRR metamaterial. (a) and (c) are for zero control field, while (b) and (d) show the response when the EIT control field has been switched on (Ω c =10γ21). Note the sharp changes in the transmittance around 277 THz in (d) and the nearly dispersion-free band in (b) due to EIT.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ ( ω ) = 1 + f m ω 2 ω m 2 ω 2 i Γ m ω ,
ε ( ω ) = 1 + κ ( ω 1 ω ) ( ω 1 ω ) 2 ( Ω c 2 4 ) i γ 13 ( ω 1 ω ) ,

Metrics