Abstract

Monte Carlo simulations are used to establish a weighting function that describes the collection of angular scattering for the WETLabs AC-9 reflecting tube absorption meter. The equivalent weighting function for the AC-9 attenuation sensor is found to be well approximated by a binary step function with photons scattered between zero and the collection half-width angle contributing to the scattering error and photons scattered at larger angles making zero contribution. A new scattering error correction procedure is developed that accounts for scattering collection artifacts in both absorption and attenuation measurements. The new correction method does not assume zero absorption in the near infrared (NIR), does not assume a wavelength independent scattering phase function, but does require simultaneous measurements of spectrally matched particulate backscattering. The new method is based on an iterative approach that assumes that the scattering phase function can be adequately modeled from estimates of particulate backscattering ratio and Fournier-Forand phase functions. It is applied to sets of in situ data representative of clear ocean water, moderately turbid coastal water and highly turbid coastal water. Initial results suggest significantly higher levels of attenuation and absorption than those obtained using previously published scattering error correction procedures. Scattering signals from each correction procedure have similar magnitudes but significant differences in spectral distribution are observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, San Diego, Calif., 1994).
  2. M. Fujii, E. Boss, and F. Chai, "The value of adding optics to ecosystem models: a case study," Biogeosciences 4, 817-835 (2007). http://www.biogeosciences.net/4/817/2007/bg-4-817-2007.pdf
    [CrossRef]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-15-2705
    [CrossRef] [PubMed]
  4. C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, "Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables," Appl. Opt. 44, 3576-3592 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-17-3576
    [CrossRef] [PubMed]
  5. D. Stramski and J. Piskozub, "Estimation of Scattering Error in Spectrophotometric Measurements of Light Absorption by Aquatic Particles from Three-Dimensional Radiative Transfer Simulations," Appl. Opt. 42, 3634-3646 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-18-3634
    [CrossRef] [PubMed]
  6. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, "Influence of Forward and Multiple Light Scatter on the Measurement of Beam Attenuation in Highly Scattering Marine Environments," Appl. Opt. 43, 4723-4731 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-24-4723
    [CrossRef] [PubMed]
  7. D. Stramski, "Artifacts in measuring absorption spectra of phytoplankton collected on a filter," Limnol. Oceanogr. 35, 1804-1809 (1990). http://aslo.org/lo/toc/vol_35/issue_8/1804.pdf
    [CrossRef]
  8. C.S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). http://www.aslo.org/lo/toc/vol_43/issue_7/1649.pdf
    [CrossRef]
  9. J. T. O. Kirk, "Monte Carlo modeling of the performance of a reflective tube absorption meter," Appl. Opt. 31, 6463-6468 (1992). http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-30-6463
    [CrossRef] [PubMed]
  10. J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994).
    [CrossRef]
  11. J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001).
    [CrossRef]
  12. J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, "The scattering error correction of reflecting-tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
    [CrossRef]
  13. D. McKee, A. Cunningham, and S. Craig, "Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom," Appl. Opt. 42, 4369-4374 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-21-4369
    [CrossRef] [PubMed]
  14. D. McKee and A. Cunningham, "Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas," Appl. Opt. 44, 126-135 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-1-126
    [PubMed]
  15. D. Doxaran, M. Babin, and E. Leymarie, "Near-infrared light scattering by particles in coastal waters," Opt. Express 15, 12834-12849 (2007).
    [CrossRef] [PubMed]
  16. P. J. Flatau, J. Piskozub, and J. R. Zaneveld, "Asymptotic light field in the presence of a bubble-layer," Opt. Express 5, 120-123 (1999).
    [CrossRef] [PubMed]
  17. Z. Otremba and J. Piskozub, "Modelling of the optical contrast of an oil film on a sea surface," Opt. Express 9, 411-416 (2001).
    [CrossRef] [PubMed]
  18. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-21-5294
    [CrossRef] [PubMed]
  19. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-33-8710
    [CrossRef]
  20. R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981). http://www.opticsinfobase.org/abstract.cfm?URI=ao-20-2-177
    [CrossRef] [PubMed]
  21. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase Function Effects on Oceanic Light Fields," Appl. Opt. 41, 1035-1050 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-6-1035
    [CrossRef] [PubMed]
  22. J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999).
    [CrossRef]
  23. W. Freda and J. Piskozub, "Improved method of Fournier-Forand marine phase function parameterization," Opt. Express 15, 12763-12768 (2007).
    [CrossRef] [PubMed]
  24. M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996).
    [CrossRef]
  25. D. Risović, "Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater," Appl. Opt. 41, 7092-7101 (2002). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7092
    [CrossRef] [PubMed]
  26. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, "Influence of the angular shape of the volumescattering function and multiple scattering on remote sensing reflectance," Appl. Opt. 45, 9210-9220 (2006) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-36-9210
    [CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (2)

2004 (1)

2003 (2)

2002 (3)

2001 (2)

Z. Otremba and J. Piskozub, "Modelling of the optical contrast of an oil film on a sea surface," Opt. Express 9, 411-416 (2001).
[CrossRef] [PubMed]

J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

1999 (2)

P. J. Flatau, J. Piskozub, and J. R. Zaneveld, "Asymptotic light field in the presence of a bubble-layer," Opt. Express 5, 120-123 (1999).
[CrossRef] [PubMed]

J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999).
[CrossRef]

1998 (1)

C.S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). http://www.aslo.org/lo/toc/vol_43/issue_7/1649.pdf
[CrossRef]

1997 (1)

1996 (1)

M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

1994 (2)

J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, "The scattering error correction of reflecting-tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994).
[CrossRef]

1992 (1)

1990 (1)

D. Stramski, "Artifacts in measuring absorption spectra of phytoplankton collected on a filter," Limnol. Oceanogr. 35, 1804-1809 (1990). http://aslo.org/lo/toc/vol_35/issue_8/1804.pdf
[CrossRef]

1981 (1)

Babin, M.

Baker, K. S.

Barnard, A. H.

Bissett, W. P.

Boss, E.

Bowles, J. H.

Chami, M.

Craig, S.

Cunningham, A.

Davis, C. O.

Donaghay, P. L.

Downes, T. V.

Doxaran, D.

Flatau, P. J.

Flatau, P.J.

J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

Forand, J. L.

J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999).
[CrossRef]

Fournier, G.

M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

Fournier, G. R.

J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999).
[CrossRef]

Freda, W.

Fry, E. S.

Gleason, A.

Hakvoort, J. H. M.

J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994).
[CrossRef]

Jonasz, M.

M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

Khomenko, G.

Kirk, J. T. O.

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, "The scattering error correction of reflecting-tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

Kohler, D. D. R.

Leathers, R. A.

Leymarie, E.

Louchard, E. M.

Maritorena, S.

McKee, D.

Melville, W. K.

Mobley, C. D.

Montes, M. J.

Moore, C. M.

Otremba, Z.

Peterson, A. R.

Piskozub, J.

Pope, R. M.

Reid, R. P.

Rhoades, B.

Risovic, D.

Roesler, C.S.

C.S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). http://www.aslo.org/lo/toc/vol_43/issue_7/1649.pdf
[CrossRef]

Siegel, D. A.

Smith, R. C.

Stramski, D.

Sullivan, J. M.

Sundman, L. K.

Terrill, E.

Twardowski, M. S.

Wouts, R.

J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994).
[CrossRef]

Zaneveld, J. R.

Zaneveld, J. R. V.

Zaneveld, J.V.R.

J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

Appl. Opt. (13)

S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-15-2705
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, C. O. Davis, J. H. Bowles, T. V. Downes, R. A. Leathers, M. J. Montes, W. P. Bissett, D. D. R. Kohler, R. P. Reid, E. M. Louchard, and A. Gleason, "Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables," Appl. Opt. 44, 3576-3592 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-17-3576
[CrossRef] [PubMed]

D. Stramski and J. Piskozub, "Estimation of Scattering Error in Spectrophotometric Measurements of Light Absorption by Aquatic Particles from Three-Dimensional Radiative Transfer Simulations," Appl. Opt. 42, 3634-3646 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-18-3634
[CrossRef] [PubMed]

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, "Influence of Forward and Multiple Light Scatter on the Measurement of Beam Attenuation in Highly Scattering Marine Environments," Appl. Opt. 43, 4723-4731 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-24-4723
[CrossRef] [PubMed]

J. T. O. Kirk, "Monte Carlo modeling of the performance of a reflective tube absorption meter," Appl. Opt. 31, 6463-6468 (1992). http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-30-6463
[CrossRef] [PubMed]

D. McKee, A. Cunningham, and S. Craig, "Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom," Appl. Opt. 42, 4369-4374 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ao-42-21-4369
[CrossRef] [PubMed]

D. McKee and A. Cunningham, "Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas," Appl. Opt. 44, 126-135 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-1-126
[PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-21-5294
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-33-8710
[CrossRef]

R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters (200-800 nm)," Appl. Opt. 20, 177-184 (1981). http://www.opticsinfobase.org/abstract.cfm?URI=ao-20-2-177
[CrossRef] [PubMed]

C. D. Mobley, L. K. Sundman, and E. Boss, "Phase Function Effects on Oceanic Light Fields," Appl. Opt. 41, 1035-1050 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-6-1035
[CrossRef] [PubMed]

D. Risović, "Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater," Appl. Opt. 41, 7092-7101 (2002). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-33-7092
[CrossRef] [PubMed]

M. Chami, D. McKee, E. Leymarie, and G. Khomenko, "Influence of the angular shape of the volumescattering function and multiple scattering on remote sensing reflectance," Appl. Opt. 45, 9210-9220 (2006) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-36-9210
[CrossRef] [PubMed]

J. Atmos. Oceanic Technol. (1)

J. Piskozub, P.J. Flatau, and J.V.R. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmos. Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

Limnol. Oceanogr. (3)

M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of lognormal functions," Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

D. Stramski, "Artifacts in measuring absorption spectra of phytoplankton collected on a filter," Limnol. Oceanogr. 35, 1804-1809 (1990). http://aslo.org/lo/toc/vol_35/issue_8/1804.pdf
[CrossRef]

C.S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). http://www.aslo.org/lo/toc/vol_43/issue_7/1649.pdf
[CrossRef]

Opt. Express (4)

Proc. SPIE (3)

J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, "The scattering error correction of reflecting-tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

J. L. Forand and G. R. Fournier, "Particle distributions and index of refraction estimation for Canadian waters," Proc. SPIE 3761, 34-44 (1999).
[CrossRef]

J. H. M. Hakvoort and R. Wouts, "Monte Carlo modelling of the light field in reflective tube type absorption meter," Proc. SPIE 2258,529-538 (1994).
[CrossRef]

Other (2)

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, San Diego, Calif., 1994).

M. Fujii, E. Boss, and F. Chai, "The value of adding optics to ecosystem models: a case study," Biogeosciences 4, 817-835 (2007). http://www.biogeosciences.net/4/817/2007/bg-4-817-2007.pdf
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Weighting distribution function for AC-9 reflective tube absorption meter. Zero indicates all photons collected by sensor, unity means no photons collected from this scattering angle.

Fig. 2.
Fig. 2.

Fraction of scattered light uncollected by the AC-9 absorption sensor, fa , and fraction of scattered light collected by the AC-9 attenuation sensor, fc , for Fournier-Forand phase functions calculated with the method proposed by Mobley et al [21].

Fig. 3.
Fig. 3.

Error weighting functions for absorption, attenuation and scattering signals calculated from fa and fc values as functions of particulate backscattering ratio.

Fig. 4.
Fig. 4.

Flowchart of steps in iterative scattering correction procedure.

Fig. 5.
Fig. 5.

AC-9 data from a clear ocean station in the sub-tropical North Atlantic Ocean with four different scattering error correction methods applied. (a), (c) and (e) data from 1m bin averages from a single depth profile. (b), (d) and (f) mean spectra from the same depth profile.

Fig. 6.
Fig. 6.

AC-9 data from a moderately turbid station in the Irish Sea, with four different scattering error correction methods applied. (a), (c) and (e) data from 1m bin averages from a single depth profile. (b), (d) and (f) mean spectra from the same depth profile.

Fig. 7.
Fig. 7.

AC-9 data from a highly turbid station in the Bristol Channel, with four different scattering error correction methods applied. (a), (c) and (e) data from 1m bin averages from a single depth profile. (b), (d) and (f) mean spectra from the same depth profile.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

a n ( λ ) = a m ( λ ) ε a ( λ )
c n ( λ ) = c m ( λ ) + ε c ( λ )
ε a ( λ ) = f a ( λ ) b p ( λ )
ε c ( λ ) = f c ( λ ) b p ( λ )
f a ( λ ) = 2 π 0 π W a ( ψ ) β ˜ p ( λ , ψ ) sin ψ d ψ
f c ( λ ) = 2 π 0 ψ c β ˜ p ( λ , ψ ) sin ψ d ψ
b p ( λ ) = b m ( λ ) 1 f a ( λ ) f c ( λ ) = E b ( λ ) b m ( λ )
a n ( λ ) = a m ( λ ) f a ( λ ) b m ( λ ) [ 1 f c ( λ ) f a ( λ ) ] = a m ( λ ) E a ( λ ) b m ( λ )
c n ( λ ) = c m ( λ ) + f c ( λ ) b m ( λ ) [ 1 f c ( λ ) f a ( λ ) ] = c m ( λ ) + E c ( λ ) b m ( λ )
E a ( λ ) = f a ( λ ) 1 f c ( λ ) f a ( λ )
E b ( λ ) = 1 1 f c ( λ ) f a ( λ )
E c ( λ ) = f c ( λ ) 1 f c ( λ ) f a ( λ )

Metrics