Abstract

We demonstrated in simulations and experiments that by defining a properly designed two-dimensional metallic aperture-grating structure on the facet of quantum cascade lasers, a small beam divergence angle can be achieved in directions both perpendicular and parallel to the laser waveguide layers (denoted as θ⊥ and θ‖, respectively). Beam divergence angles as small as θ⊥=2.7o and θ‖=3.7o have been demonstrated. This is a reduction by a factor of ~30 and ~10, respectively, compared to those of the original lasers emitting at a wavelength of 8.06 µm. The devices preserve good room temperature performance with output power as high as ~55% of that of the original unpatterned lasers. We studied in detail the trade-off between beam divergence and power throughput for the fabricated devices. We demonstrated plasmonic collimation for buried heterostructure lasers and ridge lasers; devices with different waveguide structures but with the same plasmonic collimator design showed similar performance. We also studied a device patterned with a “spider’s web” pattern, which gives us insight into the distribution of surface plasmons on the laser facet.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
    [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  4. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
    [CrossRef]
  5. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
    [CrossRef] [PubMed]
  6. Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
    [CrossRef]
  7. J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
    [CrossRef]
  8. C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
    [CrossRef]
  9. Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
    [CrossRef]
  10. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
    [CrossRef]
  11. P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007).
    [CrossRef]
  12. Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
    [CrossRef]
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  14. J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
    [CrossRef]
  15. J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
    [CrossRef]
  16. J. Feng and T. Okamoto, "Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling," Opt. Lett. 30, 2302-2304 (2005).
    [CrossRef] [PubMed]
  17. M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006).
    [CrossRef]
  18. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
    [CrossRef]
  19. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
    [CrossRef]
  20. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  21. Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
    [CrossRef]
  22. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).
  23. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  24. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405(R) (2005).
    [CrossRef]
  25. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  26. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2000).
  27. S. -H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
    [CrossRef] [PubMed]
  28. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
    [CrossRef]
  29. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
    [CrossRef] [PubMed]
  30. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd edition (Artech House Publishers, Norwood, Massachusetts, 2000).
  31. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
    [CrossRef]
  32. G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
    [CrossRef]
  33. Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
    [CrossRef]
  34. Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
    [CrossRef]
  35. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  36. A symmetric grating provides minimum momentum for flipping the direction of the SP wavevector.
  37. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
    [CrossRef]
  38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
    [CrossRef]
  39. P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
    [CrossRef]

2008

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

2007

G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[CrossRef] [PubMed]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007).
[CrossRef]

Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

2006

M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

2005

S. -H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).
[CrossRef] [PubMed]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. Feng and T. Okamoto, "Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling," Opt. Lett. 30, 2302-2304 (2005).
[CrossRef] [PubMed]

2004

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

2003

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2000

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

1999

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

1995

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

Akikusa, N.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

Alloschery, O.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Atwater, H. A.

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[CrossRef] [PubMed]

Austerer, M.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Babu Dayal, P.

P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

Beck, M.

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

Belkin, M. A.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

Berseth, C.-A.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Bour, D.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Capasso, F.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Chang, S. -H.

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Chang-Hasnain, C. J.

Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Chen, L.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Cockburn, J. W.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Corzine, S.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

Crozier, K. B.

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cubukcu, E.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Debernardi, P.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Diehl, L.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

Dwir, B.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Edamura, T.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Faist, J.

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

Fan, J.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Feneberg, M.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. Feng and T. Okamoto, "Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling," Opt. Lett. 30, 2302-2304 (2005).
[CrossRef] [PubMed]

Finger, N.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Fujita, K.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

Furuta, S.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

Gan, Q.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Gao, J.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

Gay, G.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Gianordoli, S.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Golka, S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Gornik, E.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Gray, S.

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Green, R. P.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Guo, B.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Harries, M. D.

M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006).
[CrossRef]

Hatori, N.

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Hayashi, Y.

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Helbig, W.

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

Hidber, P. C.

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

Höfler, G.

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Hofstetter, D.

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

Huang, M. C. Y.

Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Hugonin, J. P.

Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
[CrossRef]

Hvozdara, L.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Iakovlev, V. P.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Iga, K.

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Jalics, C.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Ju, Y.-G.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

Kan, H.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Kapon, E.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Kawata, S.

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Kim, E.

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Koyama, F.

P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007).
[CrossRef]

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Krysa, A. B.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Lalanne, P.

Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
[CrossRef]

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

Lee, Y. H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

Lévêque, G.

G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
[CrossRef]

Lezec, H. J.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, Z.

Martin, O. J. F.

G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

Michalzik, R.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Moser, M.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Mukaihara, T.

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Ochiai, T.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

O'Dwyer, C.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Oesterle, U.

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

Ohnoki, N.

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Okamoto, T.

J. Feng and T. Okamoto, "Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling," Opt. Lett. 30, 2302-2304 (2005).
[CrossRef] [PubMed]

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Ostermann, J. M.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Pflügl, C.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Pier, H.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Roberts, J. S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Rudra, A.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

Schatz, G.

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Schrenk, W.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Ser, J.-H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

Shin, J.-H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

Song, G.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Steele, J. M.

Strasser, G.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Sugiyama, A.

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

Summers, H. D.

M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006).
[CrossRef]

Utke, I.

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Viaris de Lesegno, B.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Wang, Q. J.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Wang, Y.

Weiner, J.

G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
[CrossRef]

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Whitesides, G. M.

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

Wilson, L. R.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Yamanishi, M.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Yu, N.

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

Zhang, X.

Zhou, Y.

Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Zhu, J.

Appl. Phys. Lett.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995).
[CrossRef]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007).
[CrossRef]

P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007).
[CrossRef]

IEEE Photon. Tech. Lett.

M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999).
[CrossRef]

Langmuir

P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996).
[CrossRef]

Laser Phys. Lett.

J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007).
[CrossRef]

Nat. Photonics

Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008).
[CrossRef]

Nat. Phys.

Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006).
[CrossRef]

Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996).
[CrossRef]

G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007).
[CrossRef]

Phys. Rev. Lett.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Sci. Am.

H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007).
[CrossRef] [PubMed]

Science

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996).
[CrossRef]

Topics Quantum Electron.

Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005).
[CrossRef]

Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Other

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405(R) (2005).
[CrossRef]

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2000).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd edition (Artech House Publishers, Norwood, Massachusetts, 2000).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

A symmetric grating provides minimum momentum for flipping the direction of the SP wavevector.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A sketch of the device, consisting of a quantum cascade laser and a metallic aperture-grating structure defined on its facet.

Fig. 2.
Fig. 2.

(a) Simulated near-field intensity of the SPs. The SPs are highly localized on the device facet: their half-intensity decay length is approximately 3 µm away from the facet. Two cross sections of the intensity are represented: one parallel to the laser facet, at 100 nm above the facet, the other perpendicular to the laser facet, along the axis of symmetry of the half-ring pattern. (b) Simulated FWHM dispersion angles of SPs as a function of the lateral aperture size w1. (c) Power transmission as a function of w1 for devices with 10 and 20 rings. Power transmission is defined as all the transmitted power (including the far-field component and the near field one that is not scattered into the far field by the grating) divided by the power launched into the laser waveguide. (d) Simulated far-field divergence angles in the vertical and lateral directions for the devices with 10 and 20 rings. In all the simulations the vertical aperture size w2 is kept constant at 2 µm.

Fig. 3.
Fig. 3.

(a) An electron micrograph showing the facet of an unpatterned λ=8.06 µm BHT QCL. (b) The 2D far-field intensity profile of the device.

Fig. 4.
Fig. 4.

Far-field measurement results of two λ=8.06 µm BHT QCLs with small apertures. (a) and (c) Electron micrographs of the two devices patterned with 10 and 20 grooves, respectively. Insets are zoom-in views. The two devices have aperture size w1×w2 =2.8×1.9 and 2.1×1.9 µm2, respectively. (b) and (d) Measured 2D far-field intensity profiles for the two device, respectively. The far-field measurements were performed while the lasers were operated in pulsed mode with 80-kHz repetition rate and 1% duty cycle.

Fig. 5.
Fig. 5.

Spectra of the device patterned with 20 rings. Top two panels and lower two panels were taken at Idr =600 and 500 mA, respectively. Spectra taken from both the front facet (patterned with the collimator) and the back facet (uncoated) are quite similar.

Fig. 6.
Fig. 6.

LI characteristics for the two BHT devices. (a) and (b) are for devices patterned with 10 and 20 rings, respectively. Shown are LI curves taken both for the original unpatterned devices and the ones with different aperture size. In all the measurements, the lasers are operated at room temperature in pulsed mode with 80-kHz repetition rate and 1% duty cycle.

Fig. 7.
Fig. 7.

Divergence angles in the vertical and lateral directions as a function of the lateral aperture size w1 . Calculation results are represented with filled symbols and experimental results are represented with hollow symbols.

Fig. 8.
Fig. 8.

Characterizations of the two BHT QCLs with large apertures. (a) and (c) Electron micrographs showing the zoom-in views of the facets of the two devices patterned with 10 and 20 grooves, respectively. The two devices have aperture size w1×w2 =10.1×1.9 and 8.1×1.9 µm2, respectively. (b) and (d) Measured 2D far-field intensity profiles for the two device, respectively.

Fig. 9.
Fig. 9.

Experimental results for the “spider’s web” design. (a) Electron micrograph of a device facet with a “spider’s web” pattern consisting of an aperture and four gratings. Inset is zoom-in view. (b) Measured far-field intensity profile for the device. Different stripes, numbered from 1 to 4 in Fig. 8(b), can be distinguished, corresponding to, respectively, the gratings in Fig. 8(a), labeled from (1) to (4).

Fig. 10.
Fig. 10.

Experimental results for a λ=9.95 µm ridge QCL. (a) An electron micrograph showing the device facet. Inset is a zoom-in view. (b) Measured far-field intensity profile for the device. The far-field measurements were performed while the lasers were operated in pulsed mode with 80-kHz repetition rate and 1% duty cycle.

Tables (2)

Tables Icon

Table 1. Optimized design parameters for λ=8.06 µm and λ=9.95 µm QCLs

Tables Icon

Table 2. Divergence angles and power output as a function of lateral aperture size w 1

Metrics