Abstract

Ultrahigh-resolution full-field optical coherence tomography (FF-OCT) is demonstrated in the 800 nm and 1200 nm wavelength regions simultaneously using a Silicon-based (Si) CCD camera and an Indium Gallium Arsenide (InGaAs) camera as area detectors and a halogen lamp as illumination source. The FF-OCT setup is optimized to support the two broad spectral bands in parallel, achieving a detection sensitivity of ~90 dB and a micrometer-scale resolution in the three directions. Images of ex vivo biological tissues are presented (rabbit trachea and Xenopus laevis tadpole) with an increase in penetration depth at 1200 nm. A color image representation is applied to fuse both images and enhance spectroscopic property visualization.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157-173 (1996).
    [CrossRef]
  3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  4. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and G. J. Fujimoto, "Rapid acquisition of in-vivo biological images by use of optical coherence tomography," Opt. Lett. 21, 1408-1410 (1996).
    [CrossRef] [PubMed]
  5. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in-vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
    [CrossRef] [PubMed]
  6. L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett. 27, 530-533 (2002).
    [CrossRef]
  7. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, "Ultrahigh-resolution fullfield optical coherence tomography," Appl. Opt. 43, 2874 (2004).
    [CrossRef] [PubMed]
  8. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006).
    [CrossRef] [PubMed]
  9. A. Dubois, G. Moneron, and A. C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun. 266, 738-743 (2006).
    [CrossRef]
  10. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, p. 1227-1234 (2004).
    [CrossRef] [PubMed]
  11. B. Laude, A. De. Martino, B. Drévillon, L. Benattar, and L. Schwartz, "Full-field optical coherence tomography with thermal light," Appl. Opt. 41, 2059-2064 (2002).
    [CrossRef]
  12. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, "Image restoration method based on Hilbert transform for full-field optical coherence tomography," Appl. Opt. 47, 459-466 (2008).
    [CrossRef] [PubMed]
  13. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and G. J. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  14. D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
    [CrossRef]
  15. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Toward assessments of blood oxygen saturation by spectroscopic optical coherence tomography," Opt. Lett. 30, 1015-1017 (2005).
    [CrossRef] [PubMed]
  16. A. Dubois, J. Moreau, and A. C. Boccara, "Spectroscopic ultrahigh-resolution full-field optical coherence microscopy," Opt. Express 16, 17082-17091 (2008).
    [CrossRef] [PubMed]
  17. Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
    [CrossRef]
  18. Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998).
    [CrossRef]
  19. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, "Simultaneous dual-band ultra-high resolution optical coherence tomography," Opt. Express 15, 10832-10842 (2007).
    [CrossRef] [PubMed]
  20. A. D. Aguirre, N. Nishizawa, W. Seitz, M. Ledere, D. Kopf, and J. G. Fujimoto, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1145-1160 (2006).
    [CrossRef] [PubMed]
  21. D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
    [CrossRef] [PubMed]
  22. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  23. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm - 200 μm wavelength region," Appl. Opt 12, 555-563 (1973).
    [CrossRef] [PubMed]
  24. Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
    [CrossRef]
  25. P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical properties of rat liver between 350 and 2200 nm," Appl. Opt. 28, 2325-2330 (1989).
    [CrossRef] [PubMed]
  26. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef] [PubMed]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  28. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4515 (1991).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, "Simultaneous dual-band ultra-high resolution optical coherence tomography," Opt. Express 15, 10832-10842 (2007).
[CrossRef] [PubMed]

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (4)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, p. 1227-1234 (2004).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
[CrossRef]

Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, "Ultrahigh-resolution fullfield optical coherence tomography," Appl. Opt. 43, 2874 (2004).
[CrossRef] [PubMed]

2003 (1)

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in-vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (1)

1998 (1)

Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998).
[CrossRef]

1996 (3)

D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
[CrossRef] [PubMed]

A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157-173 (1996).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and G. J. Fujimoto, "Rapid acquisition of in-vivo biological images by use of optical coherence tomography," Opt. Lett. 21, 1408-1410 (1996).
[CrossRef] [PubMed]

1994 (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4515 (1991).
[CrossRef] [PubMed]

1989 (1)

1973 (1)

G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm - 200 μm wavelength region," Appl. Opt 12, 555-563 (1973).
[CrossRef] [PubMed]

Aalders, M. C. G.

Adler, D. C.

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
[CrossRef]

Aguirre, A. D.

Beaurepaire, E.

Boccara, A. C.

Boppart, S. A.

Bornemann, J.

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Choi, E. S.

Choi, W. J.

Coello, Y.

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

Dainty, J. C.

D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
[CrossRef] [PubMed]

Dantus, M.

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

De, A.

Drexler, W.

Dubois, A.

Eckhaus, M. A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Faber, D. J.

Farkas, D. L.

Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998).
[CrossRef]

Feldchtein, F. I.

Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
[CrossRef]

Fercher, A. F.

A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157-173 (1996).
[CrossRef]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Först, M.

Fujimoto, G. J.

Fujimoto, J. G.

A. D. Aguirre, N. Nishizawa, W. Seitz, M. Ledere, D. Kopf, and J. G. Fujimoto, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1145-1160 (2006).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
[CrossRef]

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in-vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gale, D. M.

D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
[CrossRef] [PubMed]

Gelikonov, G. V.

Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
[CrossRef]

Gelikonov, V. M.

Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
[CrossRef]

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, p. 1227-1234 (2004).
[CrossRef] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, "Ultrahigh-resolution fullfield optical coherence tomography," Appl. Opt. 43, 2874 (2004).
[CrossRef] [PubMed]

Grychtol, P.

Hale, G. M.

G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm - 200 μm wavelength region," Appl. Opt 12, 555-563 (1973).
[CrossRef] [PubMed]

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermes, B.

Herz, P. R.

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
[CrossRef]

Huang, D.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Ippen, E. P.

Izatt, J. A.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical properties of rat liver between 350 and 2200 nm," Appl. Opt. 28, 2325-2330 (1989).
[CrossRef] [PubMed]

Kärtner, F. X.

Knuttel, A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Ko, T. H.

D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5489-5501 (2004).
[CrossRef]

Kopf, D.

Kray, S.

Kurz, H.

Laude, B.

Lecaque, R.

Ledere, M.

Lee, B. H.

Li, X. D.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lozovoy, V. V.

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

Mik, E. G.

Miller, T. L.

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

Moes, C. J. M.

Moneron, G.

A. Dubois, G. Moneron, and A. C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun. 266, 738-743 (2006).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, "Ultrahigh-resolution fullfield optical coherence tomography," Appl. Opt. 43, 2874 (2004).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, p. 1227-1234 (2004).
[CrossRef] [PubMed]

Moreau, J.

Morgner, U.

Na, J.

Nishioka, N. S.

Nishizawa, N.

Oh, W. Y.

Pan, Y.

Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998).
[CrossRef]

Parsa, P.

Pether, M. I.

D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
[CrossRef] [PubMed]

Pitris, C.

Prahl, S. A.

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schumann, C. A. Puliafito and J. G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Querry, M. R.

G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm - 200 μm wavelength region," Appl. Opt 12, 555-563 (1973).
[CrossRef] [PubMed]

Ryu, S. Y.

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schumann, J. S.

Seitz, W.

Spöler, F.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Stinsin, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Tearney, G. J.

Vabre, L.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4515 (1991).
[CrossRef] [PubMed]

van Leeuwen, T. G.

van Marle, J.

van Staveren, H. G.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Xu, B.

Q2. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater and ocular components using multiphoton intrapulse interference scan phase," Appl. Opt. 46, 3894-8401 (2007).
[CrossRef]

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

Yelin, R.

Yun, S. H.

Appl. Opt (2)

D. M. Gale, M. I. Pether, and J. C. Dainty, "Linnik microscope imaging of integrated circuit structures," Appl. Opt 35, 131-148 (1996).
[CrossRef] [PubMed]

G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm - 200 μm wavelength region," Appl. Opt 12, 555-563 (1973).
[CrossRef] [PubMed]

Appl. Opt. (7)

J. Biomed. Opt. (2)

A. F. Fercher, "Optical coherence tomography," J. Biomed. Opt. 1, 157-173 (1996).
[CrossRef]

Y. Pan and D. L. Farkas, "Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions," J. Biomed. Opt. 3, 446-455 (1998).
[CrossRef]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in-vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Dubois, G. Moneron, and A. C. Boccara, "Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region," Opt. Commun. 266, 738-743 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Phys. Med. Biol. (2)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, "Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, p. 1227-1234 (2004).
[CrossRef] [PubMed]

Radiophys. Quantum Electron. (1)

Q1. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, "Two-wavelength optical coherence tomography," Radiophys. Quantum Electron. 47, 848-859 (2004).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinsin, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic representation of the dual-band FF-OCT setup. BS, broadband beam splitter; MO, vertically-positioned microscope objectives; L1, L2, aplanetic doublet achromat lenses (300-mm focal length, L1 infrared optimized and L2 near-infrared optimized); DM dichroic mirror, D density; PZT, piezoelectric stage actuator.

Fig. 2.
Fig. 2.

Timing diagram of the acquisition system of dual-band FF-OCT. The red curves correspond to the synchronization signal of cameras and the blue dotted curves correspond to the PZT oscillation. (a) Si camera. (b) InGaAs camera.

Fig. 3.
Fig. 3.

Experimental detection sensitivity as a function of image accumulation for the Si (a) and the InGaAs (b) systems. The theoretical shot-noise limit is represented by the straight lines.

Fig. 4.
Fig. 4.

Modelization of the absorption by water on Si (a) and InGaAs (b) responsivity. The blue straight curves correspond to responsivity without absorption and the red dotted curves to spectra after absorption by water.

Fig. 5.
Fig. 5.

Experimental measurements of the interferogram in water at 0.8 µm (a) and 1.2 µm (b). The effective spectrum of the system at 0.8 µm (c) and 1.2 µm (d) is calculated by Fourier transform.

Fig. 6.
Fig. 6.

Experimental measurements of the transverse resolution in water at 0.8 µm (a) and 1.2 µm (b). The blue markers correspond to measurements and the red line corresponds to the theoretical calculations (convolution of a perfect step and the PSF and a rectangular function).

Fig. 7.
Fig. 7.

FF-OCT images of a mask for photolithography acquired simultaneously in the 0.8 µm wavelength region with the Si camera (a) and in the 1.2 µm wavelength region with the InGaAs camera (b) through 3.1 mm thick Intralipid solution.

Fig. 8.
Fig. 8.

Dual band FF-OCT cross sectional images of the African tadpole Xenopus laevis, ex vivo, representing a volume of 250 µm×250µm×1200 µm at 800 nm (a) and 1200 nm (b).

Fig. 9.
Fig. 9.

Dual band FF-OCT cross sectional images of the rabbit trachea, ex vivo, representing a volume of 250 µm×250 µm×400 µm, at 800 nm (a) and 1200 nm (b). (c) represents the differential color image. Ep epithelium; CR cartilaginous ring; FM fibrous membrane and HC hyaline cartilage.

Tables (1)

Tables Icon

Table 1. Theoretical axial resolutions of the both optical systems in water calculated from Eq. (6).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I ̅ + I coh cos [ ϕ + ψ sin ( 2 π f t ) ] ,
I 1 = η N 0 T 2 I ( x , y , t ) dt and I 1 = η N T 2 T I ( x , y , t ) dt
( I 1 I 2 ) 2 I coh 2 sin 2 ϕ ( η N f ) 2
f ( Si ) = nf ( InGa As ) = 2 f ( piezo ) 2 n T ( Si ) = 2 T ( InGa As ) = nT ( piezo ) ,
R min = ( R ref + R inc ) 2 2 N ξ sat R ref ,
Δ z = 2 ln 2 n π ( λ 2 Δ λ ) ,
h ( u ) = 2 J 1 ( u ) u 2 where u = 2 π λ r N A
Δ r = λ 2 N A

Metrics