Abstract

Photoluminescence from CdTe quantum dots encapsulated within hydrogel nanospheres can be controlled by the application an external dc electric field. Dynamic light scattering measurement of hydrogel placed under an electric field shows the collapse of the hydrogel sphere from 312 to 180nm due to volume phase transition. Distances between quantum dots placed within the hydrogel sphere can be controlled by the applied field. A 50% enhancement in the PL intensity is observed under the influence of a dc field less than 5 V/cm. A red-shift in the peak PL intensity and emission from larger sized dots indicate energy transfer between the quantum dots. The collapse of gels is reversible and therefore has potential application in non-volatile memory devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
    [CrossRef]
  2. A. Kikuchi, T. Okano, "Pulsatile drug release control using hydrogels," Adv. Drug Deliv. Rev. 54, 53-60 (2002).
    [CrossRef] [PubMed]
  3. M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
    [CrossRef] [PubMed]
  4. S.R. Carter and S. Rimmer"Aqueous compatible polymers in bionanotechnology," IEE Proc.-Nanobiotechnol. 152, 169-173 (2005).
    [CrossRef]
  5. J. Gao, B. J. Frisken, "Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres," Languir 19, 5212-5216 (2003).
    [CrossRef]
  6. K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
    [CrossRef]
  7. T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
    [CrossRef]
  8. T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
    [CrossRef] [PubMed]
  9. M. Zrìnyi, "Intelligent polymer gels controlled by magnetic fields," J. Colloid Poly. Sci. 278, 98-103 (2000).
    [CrossRef]
  10. Y. Qui, K. Park, "Environment-sensitive hydrogels for drug delivery," Adv. Drug Delivery Rev. 54, 321-339 (2002).
  11. J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
    [CrossRef] [PubMed]
  12. R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
    [CrossRef] [PubMed]
  13. Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
    [CrossRef]
  14. K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
    [CrossRef]
  15. R. H. Pelton and P. Chibante, "Preparation of aqueous lattices with N-isopropylacrylamide," Colloids Surf. 20, 247-256 (1986).
    [CrossRef]
  16. J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
    [CrossRef] [PubMed]
  17. R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
    [CrossRef]
  18. S. Hirotsu, "Electric-Field Induced Phase Transition in Polymer Gels," Jpn. J. Appl. Phys.Suppl. 24, 396-388 (1985).
  19. T. Shiga, T. Kurauchi, "Deformation of Polyelectrolyte Gels under the Influence of Electric Field," J. App. Poly. Sci. 39, 2305-2320 (1990).
    [CrossRef]
  20. T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
    [CrossRef]
  21. T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
    [CrossRef]
  22. J. Butty, N. Peyghambarian, "Room temperature optical gain in sol-gel derived CdS quantum dots," Appl. Phys. Lett. 69, 3224-3226 (1996).
    [CrossRef]
  23. J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
    [CrossRef]
  24. A. Neogi, S. Ghosh, J. Li, T. Cai, Z. Hu, "Enhanced Luminesence Efficiency from Hydrogel Microbead Encapsulated Quantum Dots," Mater. Res. Soc. Symp. Proc. 959, 0959-M02-09 (2007).
    [CrossRef]
  25. B.W. Garner, T. Cai, S. Ghosh, Z. Hu, A. Neogi, "Refractive index study of volume-phase transition in poly-acrylamide gels for optoelectronic applications" Communicated (2008); Proc. Material Research Soc. Meeting, Vol 32, Paper #: 1060-LL06-08 (2008).</other>

2005

S.R. Carter and S. Rimmer"Aqueous compatible polymers in bionanotechnology," IEE Proc.-Nanobiotechnol. 152, 169-173 (2005).
[CrossRef]

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

2004

J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
[CrossRef] [PubMed]

2003

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
[CrossRef] [PubMed]

J. Gao, B. J. Frisken, "Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres," Languir 19, 5212-5216 (2003).
[CrossRef]

2002

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

A. Kikuchi, T. Okano, "Pulsatile drug release control using hydrogels," Adv. Drug Deliv. Rev. 54, 53-60 (2002).
[CrossRef] [PubMed]

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Y. Qui, K. Park, "Environment-sensitive hydrogels for drug delivery," Adv. Drug Delivery Rev. 54, 321-339 (2002).

2001

Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
[CrossRef]

2000

M. Zrìnyi, "Intelligent polymer gels controlled by magnetic fields," J. Colloid Poly. Sci. 278, 98-103 (2000).
[CrossRef]

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

1996

J. Butty, N. Peyghambarian, "Room temperature optical gain in sol-gel derived CdS quantum dots," Appl. Phys. Lett. 69, 3224-3226 (1996).
[CrossRef]

1992

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

1990

T. Shiga, T. Kurauchi, "Deformation of Polyelectrolyte Gels under the Influence of Electric Field," J. App. Poly. Sci. 39, 2305-2320 (1990).
[CrossRef]

K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
[CrossRef]

1986

R. H. Pelton and P. Chibante, "Preparation of aqueous lattices with N-isopropylacrylamide," Colloids Surf. 20, 247-256 (1986).
[CrossRef]

1985

S. Hirotsu, "Electric-Field Induced Phase Transition in Polymer Gels," Jpn. J. Appl. Phys.Suppl. 24, 396-388 (1985).

1982

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

1973

T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
[CrossRef]

1965

R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
[CrossRef]

Ando, I.

K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
[CrossRef]

Apkarian, R.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Bai, Y.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Benedek, G. B.

T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
[CrossRef]

Butty, J.

J. Butty, N. Peyghambarian, "Room temperature optical gain in sol-gel derived CdS quantum dots," Appl. Phys. Lett. 69, 3224-3226 (1996).
[CrossRef]

Carter, S.R.

S.R. Carter and S. Rimmer"Aqueous compatible polymers in bionanotechnology," IEE Proc.-Nanobiotechnol. 152, 169-173 (2005).
[CrossRef]

Caykara, T.C.

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

Chibante, P.

R. H. Pelton and P. Chibante, "Preparation of aqueous lattices with N-isopropylacrylamide," Colloids Surf. 20, 247-256 (1986).
[CrossRef]

Conticelo, V. P.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Eustis, S.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Frisken, B. J.

J. Gao, B. J. Frisken, "Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres," Languir 19, 5212-5216 (2003).
[CrossRef]

Fujishige, S.

K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
[CrossRef]

Gao, J.

J. Gao, B. J. Frisken, "Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres," Languir 19, 5212-5216 (2003).
[CrossRef]

Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
[CrossRef]

Guven, J.

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

Hamlen, R.

R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
[CrossRef]

Hashimoto, O.

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

Hirose, Y.

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

Hirotsu, S.

S. Hirotsu, "Electric-Field Induced Phase Transition in Polymer Gels," Jpn. J. Appl. Phys.Suppl. 24, 396-388 (1985).

Hocker, L. O.

T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
[CrossRef]

Hong, X.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Hu, Z.

J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
[CrossRef] [PubMed]

Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
[CrossRef]

Kantoglu, O.J.

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

Kent, C.

R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
[CrossRef]

Kikuchi, A.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

A. Kikuchi, T. Okano, "Pulsatile drug release control using hydrogels," Adv. Drug Deliv. Rev. 54, 53-60 (2002).
[CrossRef] [PubMed]

Kim, J.

J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
[CrossRef] [PubMed]

Konno, C.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Kubota, K.

K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
[CrossRef]

Kurauchi, T.

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Shiga, T. Kurauchi, "Deformation of Polyelectrolyte Gels under the Influence of Electric Field," J. App. Poly. Sci. 39, 2305-2320 (1990).
[CrossRef]

Li, D.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Li, J.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Li, T.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Liu, Y.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Lu, X.

Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
[CrossRef]

Lyon, A.L.

J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
[CrossRef] [PubMed]

Lyon, L. A.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Menger, F. M.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Nango, M.

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

Nishimura, T.

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

Nishio, I.

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

Nisho, S.

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

Oano, T.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Okada, A.

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

Okano, T.

A. Kikuchi, T. Okano, "Pulsatile drug release control using hydrogels," Adv. Drug Deliv. Rev. 54, 53-60 (2002).
[CrossRef] [PubMed]

Ozyurek, O.

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

Park, K.

Y. Qui, K. Park, "Environment-sensitive hydrogels for drug delivery," Adv. Drug Delivery Rev. 54, 321-339 (2002).

Pelton, R. H.

R. H. Pelton and P. Chibante, "Preparation of aqueous lattices with N-isopropylacrylamide," Colloids Surf. 20, 247-256 (1986).
[CrossRef]

Peyghambarian, N.

J. Butty, N. Peyghambarian, "Room temperature optical gain in sol-gel derived CdS quantum dots," Appl. Phys. Lett. 69, 3224-3226 (1996).
[CrossRef]

Qui, Y.

Y. Qui, K. Park, "Environment-sensitive hydrogels for drug delivery," Adv. Drug Delivery Rev. 54, 321-339 (2002).

Rimmer, S.

S.R. Carter and S. Rimmer"Aqueous compatible polymers in bionanotechnology," IEE Proc.-Nanobiotechnol. 152, 169-173 (2005).
[CrossRef]

Schica, T.

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

Seredyuk, V. A.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Serpe, M.J.

J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
[CrossRef] [PubMed]

Shafer, S.

R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
[CrossRef]

Shiga, T.

T. Shiga, T. Kurauchi, "Deformation of Polyelectrolyte Gels under the Influence of Electric Field," J. App. Poly. Sci. 39, 2305-2320 (1990).
[CrossRef]

Sun, S.

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

Tanaka, T.

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
[CrossRef]

Utsumi, M.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Wang, Y.

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Wright, E. R.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Wu, J.

J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
[CrossRef] [PubMed]

Yamashita, K.

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

Yamato, M.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Zhou, B.

J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
[CrossRef] [PubMed]

Zrìnyi, M.

M. Zrìnyi, "Intelligent polymer gels controlled by magnetic fields," J. Colloid Poly. Sci. 278, 98-103 (2000).
[CrossRef]

Adv. Drug Deliv. Rev.

A. Kikuchi, T. Okano, "Pulsatile drug release control using hydrogels," Adv. Drug Deliv. Rev. 54, 53-60 (2002).
[CrossRef] [PubMed]

Adv. Drug Delivery Rev.

Y. Qui, K. Park, "Environment-sensitive hydrogels for drug delivery," Adv. Drug Delivery Rev. 54, 321-339 (2002).

Adv. Mater.

Z. Hu, X. Lu, J. Gao, "Hydrogel Opals," Adv. Mater. 13, 1708-1712 (2001).
[CrossRef]

J. Li, X. Hong, Y. Liu, D. Li, Y. Wang, J. Li, Y. Bai, T. Li, "Highly Photoluminescent CdTe/Poly(Nisopropylacrylamide Temperature-Sensitive Gels," Adv. Mater. 17, 163-166 (2005).
[CrossRef]

Appl. Phys. Lett.

J. Butty, N. Peyghambarian, "Room temperature optical gain in sol-gel derived CdS quantum dots," Appl. Phys. Lett. 69, 3224-3226 (1996).
[CrossRef]

Biomaterials.

M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Oano, "Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture," Biomaterials. 23, 561-565 (2002).
[CrossRef] [PubMed]

Colloids Surf.

R. H. Pelton and P. Chibante, "Preparation of aqueous lattices with N-isopropylacrylamide," Colloids Surf. 20, 247-256 (1986).
[CrossRef]

J. Am. Chem. Soc.

J. Kim, M.J. Serpe, A.L. Lyon, "Hydrogel Microparticles as Dynamically Tunable Microlenses," J. Am. Chem. Soc. 126, 9512-13 (2004).
[CrossRef] [PubMed]

J. App. Poly. Sci.

T. Shiga, T. Kurauchi, "Deformation of Polyelectrolyte Gels under the Influence of Electric Field," J. App. Poly. Sci. 39, 2305-2320 (1990).
[CrossRef]

J. Appl. Polym Sci.

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

T. Schica, Y. Hirose, A. Okada, T. Kurauchi, "Bending of Poly (Vinal Alcohol) -Poly (Sodium Acrylate) Composite Hdrogels in Electric Fields," J. Appl. Polym Sci. 44, 249-253 (1992).
[CrossRef]

J. Chem. Phys.

T. Tanaka, L. O. Hocker, G. B. Benedek, "Spectrum of light scattered from a viscoelastic gel," J. Chem. Phys. 59, 5151-5159 (1973).
[CrossRef]

J. Colloid Poly. Sci.

M. Zrìnyi, "Intelligent polymer gels controlled by magnetic fields," J. Colloid Poly. Sci. 278, 98-103 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

S. Hirotsu, "Electric-Field Induced Phase Transition in Polymer Gels," Jpn. J. Appl. Phys.Suppl. 24, 396-388 (1985).

Languir

J. Gao, B. J. Frisken, "Cross-Linker-Free N-Isopropylacrylamide Gel Nanospheres," Languir 19, 5212-5216 (2003).
[CrossRef]

Microsc. Microanal.

R. Apkarian, E. R. Wright, V. A. Seredyuk, S. Eustis, L. A. Lyon, V. P. Conticelo, F. M. Menger, "In-Lens Cry-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels," Microsc. Microanal. 9, 286-295 (2003).
[CrossRef] [PubMed]

Nanobiotechnol.

S.R. Carter and S. Rimmer"Aqueous compatible polymers in bionanotechnology," IEE Proc.-Nanobiotechnol. 152, 169-173 (2005).
[CrossRef]

Nature

R. Hamlen, C. Kent, S. Shafer, "Electrochemically activated contractile polymer," Nature 206, 1149-1150 (1965).
[CrossRef]

Phys. Rev. Lett.

J. Wu, B. Zhou, Z. Hu, "Phase Behavior of Thermally Responsive Microgel Colloids," Phys. Rev. Lett. 90, 048304-048308 (2003).
[CrossRef] [PubMed]

Polym. J.

K. Kubota, S. Fujishige, I. Ando, "Solution properties of poly(N-isopropyl-acrylamide) in water," Polym. J. 22, 15-20 (1990).
[CrossRef]

Polym. Sci. B

T.C. Caykara, O. Ozyurek, O.J. Kantoglu, J. Guven, "Equilibrium swelling behavior of pH- and temperaturesensitive poly(N-vinyl 2-pyrrolidone-g-citric acid) polyelectrolyte hydrogels," Polym. Sci. B 38, 2063-2071 (2000).
[CrossRef]

React. Funct. Poly.

K. Yamashita, O. Hashimoto, T. Nishimura, M. Nango, "Preparation of stimuli-responsive water absorbent," React. Funct. Poly. 51, 61-64 (2002).
[CrossRef]

Science

T. Tanaka, I. Nishio, S. Sun, S. Nisho, "Collapse of Gels in an Electric Field," Science 218, 467-469 (1982).
[CrossRef] [PubMed]

Other

A. Neogi, S. Ghosh, J. Li, T. Cai, Z. Hu, "Enhanced Luminesence Efficiency from Hydrogel Microbead Encapsulated Quantum Dots," Mater. Res. Soc. Symp. Proc. 959, 0959-M02-09 (2007).
[CrossRef]

B.W. Garner, T. Cai, S. Ghosh, Z. Hu, A. Neogi, "Refractive index study of volume-phase transition in poly-acrylamide gels for optoelectronic applications" Communicated (2008); Proc. Material Research Soc. Meeting, Vol 32, Paper #: 1060-LL06-08 (2008).</other>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Change in size of PNIPAM nanoparticles due to temperature induced phase change. Inset shows a PNIPAM sphere below LCST (left) and the sphere above LCST (Right).

Fig. 2.
Fig. 2.

Schematic for encapsulation of CdTe NCs in PNIPAM microspheres.

Fig. 3.
Fig. 3.

(a). Effect of size distributions inferred from dynamic light scattering of PNIPAM microgels at various electric field. The temperature is held constant at 24.5 °C.

Fig. 1(b).
Fig. 1(b).

(b). The DLS measured diameter of dilute colloidal PNIPAM hydrogel particles in water at 36 C. The inset shows the light scattering from concentrated hydrogels sample at 0 V (bottom-left) and at 3 V (top-right).

Fig. 4. (a).
Fig. 4. (a).

PL of PNIPAM-QDs for varying electric field at T=25 °C.

Fig. 4(b).
Fig. 4(b).

b) PL of the PNIPAM-QDs for varying electric field at T=36 °C at T=36 °C

Fig. 5.
Fig. 5.

A plot of the integrated intensity against the electric field applied to the sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ( 2 ) ( t , q ) = I ( t , q ) I ( q , 0 ) = A [ 1 + β g ( 1 ) ( t , q ) 2 ]
g ( 1 ) ( t , q ) = E ( t , q ) E * ( 0 , q ) = 0 G ( Γ ) e Γ t d Γ
R b = K B T 6 π η D

Metrics