Abstract

We propose a novel method for the implementation of a tunable multi-channel notch filter based on a thermally induced phase-shift phase-only sampled fiber Bragg grating (FBG). The proposed method is numerically and experimentally demonstrated. A 51-channel notch filter with a bandwidth (FWHM) of 0.026 nm and a tuning range of 0.6 nm has been achieved. This proposed technique offers the potential applications to the multiwavelength fiber laser and multi-channel all optical logic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, "Advances in the design and fabrication of high channel-count fiber Bragg gratings," IEEE/OSAJ. Lightwave Technol. 25, 2739-2749 (2007).
    [CrossRef]
  2. M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," Proc. OFC 04 WK1 (2004).
  3. Y. Han, F. Fresi, L. Poti, J. H. Lee, and X. Dong, "Continuously spacing-tunable multiwavelength semiconductor optical amplifier based fiber ring laser incorporating a superimposed chirped fiber Bragg grating," Opt. Lett. 32, 1032-1034 (2007).
    [CrossRef] [PubMed]
  4. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)," IEEE/OSAJ. Lightwave Technol. 22, 57-62 (2004).
    [CrossRef]
  5. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
    [CrossRef]
  6. N. Q. Ngo, "Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission," Opt. Lett. 32, 3020-3022 (2007).
    [CrossRef]
  7. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D.V. Plant, and J. Azaña, "All-optical temporal differentiator based on a single phase-shifted fiber Bragg grating," Opt. Express 15, 371-381, 2007.
    [CrossRef] [PubMed]
  8. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, "Thermally tunable narrow-band-pass filter based on a linearly chirped fiber Bragg grating," Opt. Lett. 29, 29-31 (2004).
    [CrossRef] [PubMed]
  9. D. Liu, N. Q. Ngo, and S. C. Tjin, "A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing," Opt. Commun. 281,4715-4718 (2008).
    [CrossRef]
  10. M. Li and H. Li, "Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating," Opt. Express 16, 9821-9828 (2008).
    [CrossRef] [PubMed]
  11. H. Li, Y. Nakamura, K. Ogusu, Y. Sheng, and J. E. Rothenberg, "Influence of cladding-mode coupling losses on the spectrum of a linearly chirped multi-channel fiber Bragg grating," Opt. Express 13, 1281-1290 (2005).
    [CrossRef] [PubMed]

2008 (2)

D. Liu, N. Q. Ngo, and S. C. Tjin, "A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing," Opt. Commun. 281,4715-4718 (2008).
[CrossRef]

M. Li and H. Li, "Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating," Opt. Express 16, 9821-9828 (2008).
[CrossRef] [PubMed]

2007 (4)

2005 (1)

2004 (2)

2000 (1)

Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Azaña, J.

Berger, N. K.

Dong, X.

Fischer, B.

Fresi, F.

Geng, J.

Han, Y.

Hu, Y.

Jiang, S.

Kaneda, Y.

Kulishov, M.

Lee, J. H.

Levit, B.

Li, H.

Li, M.

Li, S. Y.

Liu, D.

D. Liu, N. Q. Ngo, and S. C. Tjin, "A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing," Opt. Commun. 281,4715-4718 (2008).
[CrossRef]

Melloni,

Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

Nakamura, Y.

Ngo, N. Q.

Ogusu, K.

Peyghambarian, N.

Plant, D.V.

Poti, L.

Rothenberg, J. E.

Sheng, Y.

Shum, P.

Spiegelberg, C.

Tjin, S. C.

D. Liu, N. Q. Ngo, and S. C. Tjin, "A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing," Opt. Commun. 281,4715-4718 (2008).
[CrossRef]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, "Thermally tunable narrow-band-pass filter based on a linearly chirped fiber Bragg grating," Opt. Lett. 29, 29-31 (2004).
[CrossRef] [PubMed]

Zhang, J.

IEEE Photon. Technol. Lett. (1)

Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 12, 42-44 (2000).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

D. Liu, N. Q. Ngo, and S. C. Tjin, "A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing," Opt. Commun. 281,4715-4718 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

M. Morin, M. Poulin, A. Mailloux, F. Trépanier, and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating," Proc. OFC 04 WK1 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulation results for the reflection spectrum of the phase-only sampled FBG. (a) The 51-channel reflection spectrum (with and without π phase shift at the central position), and (b) spectra for the central three channels in Fig. 1(a).

Fig. 2.
Fig. 2.

Numerical results for the reflection spectra in the central channel of the 51-channel FBG. (a) The reflection spectra in which 7 different phase shifts ranged from 0 to π are introduced at the central position of FBG, and (b) the reflection spectra in which a π phase shift is introduced at 7 different positions of the grating.

Fig. 3.
Fig. 3.

Schematic diagram of the proposed multi-channel notch filter: Broadband light source (BLS).

Fig. 4.
Fig. 4.

(a) Reflection spectrum of the 51-channel phase sample FBG, and (b) its dispersion spectrum.

Fig. 5.
Fig. 5.

Measurement results for the π phase shifted 51-channel FBG. (a) Reflection spectrum, and (b) reflection spectrum of the central three channels.

Fig. 6.
Fig. 6.

(a) Reflection spectra with different phase shifts (the 7th phase shift is π), (b) central channel’s reflection spectra of the 51-channel FBG with the phase shifts at three different positions, (c) seven central channel reflection spectra scanned every other 5 minutes, and (d) the reflection spectra of four channels with different central wavelengths (i.e., 1530.20 nm, 1540.50 nm, 1550.04 nm, and 1560.50 nm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = R e { [ Δ n 0 + Δ n 1 ( z ) 2 · exp ( i 2 π z Λ ( z ) ) ] · s ( z ) } ,
Δ n ' ( z ) = { Re { [ Δ n 0 + Δ n 1 ( z ) 2 · exp ( i 2 π z Λ ( z ) ) ] · s ( z ) } when z z 0 Re { [ Δ n 0 + Δ n 1 ( z ) 2 · exp ( i 2 π z Λ ( z ) ) ] · exp ( i θ ) · s ( z ) } when z > z 0 .
θ = 2 π L λ κ · Δ T ,

Metrics