Abstract

Wave-guiding in the visible spectral range is investigated for a micro-structured crystal fiber filled with a dual-frequency addressable nematic liquid crystal mixture. The fiber exhibits a solid core surrounded by just 4 rings of cylindrical holes. Control of the liquid crystal alignment by anchoring agents permits relatively low attenuation. Samples with different anchoring conditions at the interface of the silica glass and the liquid crystal show different transmission properties and switching behavior. Polarization dependent and independent fiber optic switching is observed. Due to a dual-frequency addressing scheme, active switching to both states with enhanced and reduced transmission becomes possible for planar anchoring. Even a non-perfect fiber shows reasonable transmission and a variety of interesting effects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston MA, 2003).
    [CrossRef]
  3. L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  4. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  5. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
    [CrossRef] [PubMed]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  7. H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).
  8. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
    [CrossRef]
  9. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
    [CrossRef]
  10. M. Schadt, "Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects," Mol. Cryst. Liq. Cryst. 89, 77-92 (1982).
    [CrossRef]
  11. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  12. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggelton, "Resonance and Scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  13. H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
    [CrossRef]
  14. G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
    [CrossRef]
  15. S. Kralj and S. Žumer, "The stability diagram of a nematic liquid crystal confined to a cylindrical cavity," Liq. Cryst. 15, 521-527 (1993).
    [CrossRef]

2007

H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

2006

2005

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

2003

2002

1993

S. Kralj and S. Žumer, "The stability diagram of a nematic liquid crystal confined to a cylindrical cavity," Liq. Cryst. 15, 521-527 (1993).
[CrossRef]

1992

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

1982

M. Schadt, "Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects," Mol. Cryst. Liq. Cryst. 89, 77-92 (1982).
[CrossRef]

1974

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
[CrossRef]

Alkeskjold, T. T.

Argyros, A.

Bartelt, H.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Barth, M.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Benson, O.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Bjarklev, A.

Boyko, E. P.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

Broeng, J.

Bücher, H. K.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
[CrossRef]

Cox, F. M.

Crawford, G. P.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

D’Andrea, C.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

de Sterke, C. M.

Doane, J. W.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Dunn, S. C.

Eggelton, B. J.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Fritz, W.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

Gauza, S.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hermann, D. S.

Kirchhof, J.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Kitzerow, H.-S.

H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).

Klingbiel, R. T.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
[CrossRef]

Kobelke, J.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Kralj, S.

S. Kralj and S. Žumer, "The stability diagram of a nematic liquid crystal confined to a cylindrical cavity," Liq. Cryst. 15, 521-527 (1993).
[CrossRef]

Lægsgaard, J.

Large, M. C. J.

Lehmann, H.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Leppert, J.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Li, J.

Litchinitser, N. M.

Lorenz, A.

H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).

Matthias, H.

H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).

McPhedran, R. C.

Mitcheltree, J. A.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

Mörl, K.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Röpke, U.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Russell, P. St. J.

Schadt, M.

M. Schadt, "Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects," Mol. Cryst. Liq. Cryst. 89, 77-92 (1982).
[CrossRef]

Schuster, K.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Schwuchow, A.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Scolari, L.

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Smolka, S.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Taccheo, T.

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

Usner, B.

VanMeter, J. P.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
[CrossRef]

White, T. P.

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wu, S.-T.

Zumer, S.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

Žumer, S.

S. Kralj and S. Žumer, "The stability diagram of a nematic liquid crystal confined to a cylindrical cavity," Liq. Cryst. 15, 521-527 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. P. Crawford, J. A. Mitcheltree, E. P. Boyko, W. Fritz, S. Zumer, and J. W. Doane, "K33/K11 determination in nematic liquid crystals: An optical birefringence technique," Appl. Phys. Lett. 60, 3226-3228 (1992).
[CrossRef]

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter: "Frequency-addressed liquid crystal field effect," Appl. Phys. Lett. 25, 186-188 (1974).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

J. Lightwave Technol.

Liq. Cryst.

S. Kralj and S. Žumer, "The stability diagram of a nematic liquid crystal confined to a cylindrical cavity," Liq. Cryst. 15, 521-527 (1993).
[CrossRef]

Meas. Sci. Technol.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. Schadt, "Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects," Mol. Cryst. Liq. Cryst. 89, 77-92 (1982).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi A

H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, T. Taccheo, and C. D’Andrea: "Preparation and application of functionalized photonic crystal fibres," Phys. Status Solidi A 204, 3805-3821 (2007).
[CrossRef]

H. Matthias, A. Lorenz, and H.-S. Kitzerow, "Tuneable photonic crystals obtained by liquid crystal infiltration," Phys. Status Solidi A 11, 3754-3767 (2007).

Other

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic Publishers, Boston MA, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

End face of a photonic crystal fiber (microscopic picture, 100x objective) and attenuation spectrum of the fiber, when filled with air.

Fig. 2.
Fig. 2.

Cartoon of a photonic crystal fiber sandwiched between two ITO-coated glass plates with contact electrodes. The fiber is surrounded by transparent glue.

Fig. 3.
Fig. 3.

Transmitted white light intensity versus time (fiber shown as inset in Fig. 1, with ZLI 2461 and planar anchoring).

Fig. 4.
Fig. 4.

Fiber with planar anchoring: Linearly polarized components of the transmitted white light intensity versus voltage (×: x-polarized, ∇: y-polarized). The insets show near field pictures at 240 Vrms for different polarizations.

Fig. 5.
Fig. 5.

Light source spectrum (×, right scale) and transmitted intensity spectra (left scale) for 0, 144 and 216 Vrms (f=1 kHz) observed for planar anchoring. The spectra were recorded with an ORIEL 77400 CCD grating spectrometer and with a polarizer in x-direction.

Fig. 6.
Fig. 6.

Transmitted light intensity spectra for homeotropic anchoring (fiber shown as inset in Fig. 1, filled with ZLI 2461) for 0, 192 and 288 Vrms (f=1 kHz).

Metrics