Abstract

We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  3. H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
    [CrossRef]
  4. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
    [CrossRef]
  5. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).
  6. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  7. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
    [CrossRef]
  8. M. J. Bloemer and Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
  9. M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
    [CrossRef]
  10. J. M. Bennett, "Precise method for measuring the phase change on reflection," J Opt. Soc. Am. 54, 612-624 (1964).
    [CrossRef]
  11. B. Bates and D. J. Bradley, "Interference filters for the far ultraviolet," Appl. Opt. 5, 971 (1966).
    [CrossRef] [PubMed]
  12. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  14. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
    [CrossRef]
  15. A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).
  17. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
    [CrossRef]
  18. E. D. Palik ed., Handbook of Optical Constants of Solids (Academic, New York, 1985)pp. 350- 445.
  19. S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986).
    [CrossRef]
  20. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Pyhs. Rev. Lett. 95, 063901 (2005).
    [CrossRef]
  21. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-85 (2007).
    [CrossRef] [PubMed]
  22. V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
    [CrossRef]

2008 (2)

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

2007 (3)

Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-85 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

2006 (2)

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

2005 (2)

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
[CrossRef]

Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Pyhs. Rev. Lett. 95, 063901 (2005).
[CrossRef]

2003 (1)

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
[CrossRef]

1998 (3)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

1986 (1)

S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986).
[CrossRef]

1966 (1)

1964 (1)

J. M. Bennett, "Precise method for measuring the phase change on reflection," J Opt. Soc. Am. 54, 612-624 (1964).
[CrossRef]

Akozbek, N.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Anantha Ramakrishna, S.

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Bates, B.

Batra, I. P.

S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986).
[CrossRef]

Bennett, J. M.

J. M. Bennett, "Precise method for measuring the phase change on reflection," J Opt. Soc. Am. 54, 612-624 (1964).
[CrossRef]

Bloemer, M.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Bloemer, M. J.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
[CrossRef]

M. J. Bloemer and Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Bowden, C. M.

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Bradley, D. J.

Cappeddu, M. G.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Centini, M.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Ciraci, S.

S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986).
[CrossRef]

D’Aguanno, G.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

de Ceglia, D.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Desyatnikov, A.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

D'Orazio, A.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Fan, S.

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Haus, J. W.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Karalis,

Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Pyhs. Rev. Lett. 95, 063901 (2005).
[CrossRef]

Kuhta, N. A.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
[CrossRef]

Kurs,

Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-85 (2007).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Mattiucci, N.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Milton, G. W.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
[CrossRef]

Pendry, J. B.

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Podolskiy, V. A.

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
[CrossRef]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Scalora, M.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Shin, H.

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Stewart, W. J.

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Vincenti, M. A.

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

Wiltshire, M. C. K.

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Appl. Opt. (1)

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. J. Bloemer and Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).

V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005)
[CrossRef]

J Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998).
[CrossRef]

J Opt. Soc. Am. (1)

J. M. Bennett, "Precise method for measuring the phase change on reflection," J Opt. Soc. Am. 54, 612-624 (1964).
[CrossRef]

J. Mod. Opt. (1)

S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Photon. News (1)

M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999).
[CrossRef]

Phys. Rev. A (2)

D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008).
[CrossRef]

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008)
[CrossRef]

Phys. Rev. B (1)

S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Pyhs. Rev. Lett. (1)

Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Pyhs. Rev. Lett. 95, 063901 (2005).
[CrossRef]

Science (2)

Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-85 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).

Other (4)

E. D. Palik ed., Handbook of Optical Constants of Solids (Academic, New York, 1985)pp. 350- 445.

A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic representation of the lens, object plane with two slits, and the image plane. The lens consists of 5.5 periods of Ag/GaP (22 nm/35 nm) with GaP antireflection coatings, 17 nm thick, on the entrance and exit faces. The object plane to image plane distance is fixed at 391 nm and a+b=50 nm. A plane, monochromatic, TM polarized wave at a wavelength of λ0 =532nm placed in vacuo is incident normally on the object plane, k0 =2π/λ0 is the vacuum wave-vector. The strength of the electric and magnetic fields are in arbitrary units.

Fig. 2.
Fig. 2.

Transmittance of the lens at a wavelength of 532 nm.

Fig. 3.
Fig. 3.

Z-component of the Poynting vector (arbitrary units) in the space beyond the slits without the lens in place. The color is proportional to the power with red regions indicating maximum power flow. Note the maximum value of the color scale is 0.1.

Fig. 4.
Fig. 4.

Z-component of the Poynting vector in the space beyond the slits with the lens placed directly on the slits. The waveguiding by the lens is clearly seen by the two channels of optical power. Also notice that the maximum value of the color scale is 20 times higher than in Fig. 3 and indicates that the power flowing into the region downstream from the slits has increased dramatically due to the presence of the lens. The increased power flow results from the resonant coupling of the evanescent waves to the surface plasmon modes in the lens and the rapid dissipation of the surface plasmons through joule heating.

Fig. 5.
Fig. 5.

Z-component of the Poynting vector propagating in the space beyond the slits with the lens placed 10 nm beyond the slits. The power flowing into the lens has been reduced by more than a factor of 2 in comparison to Fig. 4 due to the reduced coupling of the evanescent waves generated by the slits and the surface plasmon modes of the lens.

Fig. 6.
Fig. 6.

Z-component of the Poynting vector propagating in the space beyond the slits with the lens placed 50 nm beyond the slits. The weaker coupling of the lens to the evanescent waves generated by the slit is evidenced by the maximum value of 0.2 for the color scale.

Fig. 7.
Fig. 7.

Log-scale plot of the net power flowing through each layer of the lens for different placements of the lens with respect to the slits. The stair-step form of the plots indicates the power dissipated in the silver layers and not dissipated in the lossless GaP layers. The strength of the coupling of the evanescent waves to the lens is illustrated at the z=0 position. For the lens positioned at the slits, the maximum power is drawn into the lens and then dissipated in the successive Ag layers. Note that the power flowing beyond the lens is the same in every case. The net power flowing beyond the lens is attributed to the propagating waves only and is 60% of the initial power associated with the propagating waves. Beyond the lens, evanescent waves do not transfer power. Evanescent waves are present beyond the lens but do not carry a net power flow into the far field. Also shown is the case for only the propagating modes. The initial value of 96% and not 100% is due to the 4% reflectance for the propagating waves.

Fig. 8.
Fig. 8.

Fig. 8. Log-scale plot of the total power dissipated in the lens for different placements of the lens with respect to the slits. The red line in the plot is the case when the evanescent waves have been removed from the calculation. As expected the case for only the propagating waves shows a 36% power loss for every placement of the lens. This is consistent with the value of a 60% transmittance and 4% reflectance for the propagating waves. For the lens placed directly on the slits, the total power loss is dominated by the evanescent waves. For the lens placed 50 nm downstream from the slits the losses for the propagating waves and the evanescent waves are nearly equal.

Fig. 9.
Fig. 9.

Plotted is the z-component of the Poynting vector at the image plane. The total power flowing at the image plane and the resolution are independent of the position of the lens but depend on the total distance (d=L+a+b) image plane to object plane. Without the lens in place the slits are not resolved. The distance between the source and image plane was chosen somewhat arbitrarily to be the distance at which the z-component of the Poynting vector goes to zero at x=0. Due to vortices formed in the super resolution process, for d slightly less than 391 nm the z-component of the Poynting vector is negative and for d>391 nm the value is positive.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H ( x , z , t ) = ( 1 / 2 ) [ H ( x , z ) exp ( i ω t ) + c . c ] ,
H ( x , z ) = + A ( k x ) H ( k x , z ) exp [ i k x x ] d k x ,
A ( k x ) = FT ( t screen ( z = 0 , x ) ) ,
t screen ( z = 0 , x ) = { 0 < x < D / 2 a 1 1 D / 2 a 1 x D / 2 0 D / 2 < x < D / 2 1 D / 2 x D / 2 + a 2 0 D / 2 + a 2 < x <
d 2 H ( k x , z ) d z 2 + ( n ̂ ( z ) 2 k 0 2 k x 2 ) H ( k x , z ) = 0 ,
× H = i ω ε ( z ) E ,
S = ( 1 / 2 ) Re [ E × H * ] .
P dissipated = ω 2 Im ( ε ) [ E x 2 + E z 2 ] dx dz

Metrics