Abstract

We report on ultrashort pulse generation from a passively modelocked erbium fiber laser operating in the highly positive dispersion regime. Highly-chirped pulses with 5.3 ps duration and spectral bandwidth of 8.3 nm are generated. They are extra-cavity compressed down to 757 fs. Numerical simulations confirm the experimental results and show that these pulses could be interpreted as dissipative solitons.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
    [CrossRef] [PubMed]
  2. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2740 (2007)
    [CrossRef] [PubMed]
  3. F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
    [CrossRef]
  4. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  5. J. An, D. Kim, J. W. Dawson, M. J. Messerly, and C. P. J. Barty, "Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs," Opt. Lett. 32, 2010-2012 (2007).
    [CrossRef] [PubMed]
  6. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  7. A. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, "Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ," Opt. Express 16, 3130-3135 (2008).
    [CrossRef] [PubMed]
  8. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  9. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  10. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided soliton in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
    [CrossRef] [PubMed]
  11. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  12. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  13. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008).
    [CrossRef]
  14. W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers", Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  15. D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
    [CrossRef]
  16. see e.g. Dissipative Solitons: From Optics to Biology and Medicine, N. Akhmediev; A. Ankievicz Eds, Springer (2008).
  17. G. Martel, C. Chédot, V. Réglier, A. Hideur, B. Ortaç, and Ph. Grelu, "On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
    [CrossRef] [PubMed]
  18. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23, 280-282 (1998).
    [CrossRef]
  19. P. A. Belanger, L. Gagnon, and C. Pare, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943-945 (1989).
    [CrossRef] [PubMed]
  20. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
    [CrossRef]

2008

A. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, "Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ," Opt. Express 16, 3130-3135 (2008).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers", Phys. Rev. A 77, 023814 (2008).
[CrossRef]

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

2007

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

G. Martel, C. Chédot, V. Réglier, A. Hideur, B. Ortaç, and Ph. Grelu, "On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
[CrossRef] [PubMed]

C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2740 (2007)
[CrossRef] [PubMed]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
[CrossRef] [PubMed]

J. An, D. Kim, J. W. Dawson, M. J. Messerly, and C. P. J. Barty, "Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs," Opt. Lett. 32, 2010-2012 (2007).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
[CrossRef] [PubMed]

2006

2004

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
[CrossRef]

1998

1989

Akhmediev, N. N.

An, J.

Ankiewicz, A.

Barty, C. P. J.

Belanger, P. A.

Buckley, J.

Buckley, J. R.

F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
[CrossRef]

Chédot, C.

Cheng, T. H.

Chong, A.

Clark, W. G.

F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
[CrossRef]

Dawson, J. W.

Gagnon, L.

Grelu, Ph.

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Hideur, A.

Ilday, F. Ö.

F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
[CrossRef]

Kim, D.

Kracht, D.

Kuhn, V.

Lecaplain, C.

Lederer, M. J.

Limpert, J.

Lu, C.

Luther-Davies, B.

Martel, G.

Messerly, M. J.

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Ortaç, B.

Pare, C.

Qian, L. J.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Réglier, V.

Renninger, W.

Renninger, W. H.

Ruehl, A.

Schmidt, O.

Schreiber, T.

Tam, H. Y.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided soliton in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
[CrossRef] [PubMed]

Tünnermann, A.

Wandt, D.

Wise, F.

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers", Phys. Rev. A 77, 023814 (2008).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
[CrossRef] [PubMed]

Wise, F. W.

Wu, J.

Wu, X.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

Xie, G. Q.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Zhang, H.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided soliton in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, H. Y. Tam, "Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion" Opt. Commun. 281, 3324-3326 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

J. An, D. Kim, J. W. Dawson, M. J. Messerly, and C. P. J. Barty, "Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs," Opt. Lett. 32, 2010-2012 (2007).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
[CrossRef] [PubMed]

C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2740 (2007)
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided soliton in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
[CrossRef] [PubMed]

G. Martel, C. Chédot, V. Réglier, A. Hideur, B. Ortaç, and Ph. Grelu, "On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007).
[CrossRef] [PubMed]

N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23, 280-282 (1998).
[CrossRef]

P. A. Belanger, L. Gagnon, and C. Pare, "Solitary pulses in an amplified nonlinear dispersive medium," Opt. Lett. 14, 943-945 (1989).
[CrossRef] [PubMed]

Phys. Rev. A

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers", Phys. Rev. A 77, 023814 (2008).
[CrossRef]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, "Coexistence and competition between different soliton-shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Phys. Rev. Lett.

F. Ö.  Ilday, J. R.  Buckley, W. G.  Clark, and F. W.  Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett.  92, 213902 (2004).
[CrossRef]

Other

see e.g. Dissipative Solitons: From Optics to Biology and Medicine, N. Akhmediev; A. Ankievicz Eds, Springer (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. WDM : 980/1550 nm multiplexer; L1, L2, L3: coupling lenses; λ/2, λ/4: half- and quarter- wave plates.

Fig. 2.
Fig. 2.

Right: Typical output spectrum on a linear scale. Inset presents the spectrum on a logarithmic scale. Left: Autocorrelation trace of the output pulse on linear and logarithmic (inset) scales.

Fig. 3.
Fig. 3.

(a). Autocorrelation trace of the dechirped pulse. (b) rf spectrum recorded at the fundamental frequency. Resolution bandwidth is 300 Hz.

Fig. 4.
Fig. 4.

Predicted evolution of the spectral shape vs. pump power for (a) a real saturable absorber with 2 ps relaxation time and (b) a SAM with a monotonic saturation and an infinite fast response.

Fig. 5.
Fig. 5.

Results of numerical simulations for Esat=120 pJ : (a). intra-cavity pulse evolution in the temporal and spectral domains. OC: Output coupling and SA: Saturable absorber. (b). Output power spectrum (solid curve) and simulated gain profile (dashed curve). Temporal intensity profile (solid curves) and instantaneous frequency (dashed curves) of the output pulses before (c) and after extra-cavity dechirping (d).

Fig. 6.
Fig. 6.

Results of numerical simulations for Esat=350 pJ : (a) intra-cavity pulse evolution in the temporal and spectral domains. (b) Output power spectrum (solid curve) and simulated gain profile (dashed curve). Temporal intensity profile (solid curves) and instantaneous frequency (dashed curves) of the output pulses before (c) and after extra-cavity dechirping (d).

Tables (1)

Tables Icon

Table 1: Intra-cavity fiber parameters used in the simulation of the laser dynamics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A t 2 + γ A 2 A + g 2 A + g 2 Δ Ω g 2 2 A t 2

Metrics