Abstract

We report the inscription of fibre Bragg gratings in non-sensitised SMF 28 and HI 980 fibre by exposure to VUV F2 laser radiation at 157nm. The modulated effective refractive index change Δneff deduced from the shift in the grating reflection peaks was Δneff=2.8×10-4 and 1.7×10-4 in SMF 28 and HI 980 fibre respectively. The possible influence of non-uniformity of core exposure and VUV cladding absorption loss on these results is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [Crossref] [PubMed]
  2. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
    [Crossref]
  3. K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).
  4. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nmfemtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
    [Crossref] [PubMed]
  5. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
    [Crossref]
  6. H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).
  7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [Crossref]
  8. J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical wave-guides and fibers with 193-nm light from an ArF excimer-laser,” Opt. Lett. 19, 387–389 (1994).
    [PubMed]
  9. K. P. Chen, P. R. Herman, and R. Tam, “157-nm F2 laser photosensitivity and photosensitization in optical fibres,” in Bragg Grating, Photosensitivity and Poling in Glass Waveguides, OSA Tech Digest July (2001).
  10. P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).
  11. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
    [Crossref]
  12. K. P. Chen and P. R. Herman, “Enhancement and tuning of fibre Bragg grating reflection by 157 nm F-2-laser post exposure,” Electron Lett 37, 822–823 (2001).
    [Crossref]
  13. K. P. Chen and P. R. Herman, “Strong 157 nm F2 laser photosensitivity-locking of hydrogen-loaded telecommunication fibre for 248 nm fabrication of long-period gratings,” Electron Lett. 38, 17–19 (2002).
    [Crossref]
  14. Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
    [Crossref]
  15. P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
    [Crossref]
  16. P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
    [Crossref]
  17. E. G. Chen157-nm radiation-induced Bragg gratings in silica optical waveguides M.A.Sc, University of Toronto2003 (http://proquest.umi.com/login).
  18. A. M. Johnson, Refractive Index Modification and the Inscription of Fibre Bragg Gratings using 157nm Laser Light, PhD Thesis University of Hull 2005 (www.fbg157nm.com).
  19. P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
    [Crossref]
  20. C. J. Sansonetti, J. Reader, and K. Vogler, “Precision measurement of wavelengths emitted by a molecular fluorine laser at 157 nm,” Appl. Opt. 40, 1974–1978 (2001).
    [Crossref]
  21. M. Livitiis and S Pissadakis “Bragg grating recording in low defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Letts. 33, 1449–51 (2008).
    [Crossref]
  22. A. Othonos and K. Kalli, Fiber Bragg Gratings, (Artech House, Boston, 1999) p 97.
  23. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
    [Crossref]
  24. C. M. Smith and N F Borrelli “Behaviour of 157nm excimer-laser-induced refractive index changes in silica” J. Opt. Soc. Am. B 23, 1815–1821 (2006).
    [Crossref]
  25. B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
    [Crossref]
  26. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27, 809–811 (2002).
    [Crossref]

2008 (1)

M. Livitiis and S Pissadakis “Bragg grating recording in low defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Letts. 33, 1449–51 (2008).
[Crossref]

2007 (1)

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (3)

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nmfemtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref] [PubMed]

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

2002 (2)

K. P. Chen and P. R. Herman, “Strong 157 nm F2 laser photosensitivity-locking of hydrogen-loaded telecommunication fibre for 248 nm fabrication of long-period gratings,” Electron Lett. 38, 17–19 (2002).
[Crossref]

J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27, 809–811 (2002).
[Crossref]

2001 (3)

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

C. J. Sansonetti, J. Reader, and K. Vogler, “Precision measurement of wavelengths emitted by a molecular fluorine laser at 157 nm,” Appl. Opt. 40, 1974–1978 (2001).
[Crossref]

K. P. Chen and P. R. Herman, “Enhancement and tuning of fibre Bragg grating reflection by 157 nm F-2-laser post exposure,” Electron Lett 37, 822–823 (2001).
[Crossref]

2000 (1)

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

1997 (2)

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

1995 (2)

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[Crossref]

1994 (1)

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

1989 (1)

Albert, J

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

Albert, J.

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

Beckley, K.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Bilodeau, F

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

Bilodeau, F.

J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical wave-guides and fibers with 193-nm light from an ArF excimer-laser,” Opt. Lett. 19, 387–389 (1994).
[PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Booth, H. J.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

Borrelli, N F

Chen, E. G.

E. G. Chen157-nm radiation-induced Bragg gratings in silica optical waveguides M.A.Sc, University of Toronto2003 (http://proquest.umi.com/login).

Chen, K. P.

K. P. Chen and P. R. Herman, “Strong 157 nm F2 laser photosensitivity-locking of hydrogen-loaded telecommunication fibre for 248 nm fabrication of long-period gratings,” Electron Lett. 38, 17–19 (2002).
[Crossref]

K. P. Chen and P. R. Herman, “Enhancement and tuning of fibre Bragg grating reflection by 157 nm F-2-laser post exposure,” Electron Lett 37, 822–823 (2001).
[Crossref]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

K. P. Chen, P. R. Herman, and R. Tam, “157-nm F2 laser photosensitivity and photosensitization in optical fibres,” in Bragg Grating, Photosensitivity and Poling in Glass Waveguides, OSA Tech Digest July (2001).

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Coric, D.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Corkum, P.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Deng, H-Y.

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

Dianov, E. M.

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Ding, H.

Dragomir, A.

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Dyer, P. E.

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[Crossref]

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[Crossref]

Fokine, M.

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[Crossref]

Glenn, W. H.

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

Grobnic, D.

Herman, P. R.

K. P. Chen and P. R. Herman, “Strong 157 nm F2 laser photosensitivity-locking of hydrogen-loaded telecommunication fibre for 248 nm fabrication of long-period gratings,” Electron Lett. 38, 17–19 (2002).
[Crossref]

K. P. Chen and P. R. Herman, “Enhancement and tuning of fibre Bragg grating reflection by 157 nm F-2-laser post exposure,” Electron Lett 37, 822–823 (2001).
[Crossref]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

K. P. Chen, P. R. Herman, and R. Tam, “157-nm F2 laser photosensitivity and photosensitization in optical fibres,” in Bragg Grating, Photosensitivity and Poling in Glass Waveguides, OSA Tech Digest July (2001).

Hibino, Y.

Hill, K. O.

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical wave-guides and fibers with 193-nm light from an ArF excimer-laser,” Opt. Lett. 19, 387–389 (1994).
[PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Illy, E. K.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

Jackson, B.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Johnson, A. M.

A. M. Johnson, Refractive Index Modification and the Inscription of Fibre Bragg Gratings using 157nm Laser Light, PhD Thesis University of Hull 2005 (www.fbg157nm.com).

Johnson, A-M.

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

Johnson, D. C.

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical wave-guides and fibers with 193-nm light from an ArF excimer-laser,” Opt. Lett. 19, 387–389 (1994).
[PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings, (Artech House, Boston, 1999) p 97.

Kawachi, M.

Kearsley, A. J.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

Knowles, M. R. H.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

Korosawa, K.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Kryukov, P. G.

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Liao, X

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

Livitiis, M.

M. Livitiis and S Pissadakis “Bragg grating recording in low defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Letts. 33, 1449–51 (2008).
[Crossref]

Lu, P.

Malo, B.

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical wave-guides and fibers with 193-nm light from an ArF excimer-laser,” Opt. Lett. 19, 387–389 (1994).
[PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Margulis, W.

Maswadi, S. M.

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

Mehendale, M.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Meltz, G.

Mihailov, S. J.

Moore, D.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Morey, W. W.

Naumov, A.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Ng, S.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Nikogosyan, D. N.

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings, (Artech House, Boston, 1999) p 97.

Pissadakis, S

M. Livitiis and S Pissadakis “Bragg grating recording in low defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Letts. 33, 1449–51 (2008).
[Crossref]

Purves, G. T.

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

Ran, Z-L.

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

Rao, Y-J.

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

Rayner, D.

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Reader, J.

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

Sansonetti, C. J.

Smelser, C. W.

Smith, C. M.

Snelling, H. V.

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

Tam, R.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

K. P. Chen, P. R. Herman, and R. Tam, “157-nm F2 laser photosensitivity and photosensitization in optical fibres,” in Bragg Grating, Photosensitivity and Poling in Glass Waveguides, OSA Tech Digest July (2001).

Theriault, S.

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

Unruh, J.

Vogler, K.

Walker, R. B.

Walton, C. D.

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

Yaminishi, T.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Yang, J.

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Zagorul’ko, K. A.

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Zhang, J.

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by uv exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Electron Lett (2)

K. P. Chen and P. R. Herman, “Enhancement and tuning of fibre Bragg grating reflection by 157 nm F-2-laser post exposure,” Electron Lett 37, 822–823 (2001).
[Crossref]

B. Malo, J Albert, K. O. Hill, F Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence arf excimer-laser light,” Electron Lett 31, 879–880 (1995).
[Crossref]

Electron Lett. (1)

K. P. Chen and P. R. Herman, “Strong 157 nm F2 laser photosensitivity-locking of hydrogen-loaded telecommunication fibre for 248 nm fabrication of long-period gratings,” Electron Lett. 38, 17–19 (2002).
[Crossref]

Electron. Lett. (1)

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F2 laser radiation,” Electron. Lett. 36, 2000–2001 (2000).
[Crossref]

J. Lightwave Technol. (2)

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,” J. Lightwave Technol. 15, 1470–1477 (1997).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys D (1)

P. E. Dyer, A-M. Johnson, H. V. Snelling, and C. D. Walton, “Measurement of 157 nm F2 laser heating of silica fibre using an in situ fibre Bragg grating,” J. Phys D 34, L109–112 (2001).
[Crossref]

Opt. Commun. (1)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer-laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[Crossref]

Opt. Exp. (1)

Y-J. Rao, Z-L. Ran, X Liao, and H-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Exp. 15, 14936–14941 (2007).
[Crossref]

Opt. Lett. (4)

Opt. Letts. (1)

M. Livitiis and S Pissadakis “Bragg grating recording in low defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Letts. 33, 1449–51 (2008).
[Crossref]

Proc, SPIE (1)

P. R. Herman, K. Beckley, B. Jackson, K. Korosawa, D. Moore, T. Yaminishi, and J. Yang, “Processing applications with the 157-nm fluorine excimer laser,” Proc, SPIE 2992, 86–95 (1997).
[Crossref]

Proc. SPIE (1)

P. E. Dyer, A-M. Johnson, S. M. Maswadi, and C. D. Walton, “F2 laser applications for machining optoelectronic microstructures,” Proc. SPIE 4941, 84–93 (2003).
[Crossref]

Quantum Electron (1)

K. A. Zagorul’ko, P. G. Kryukov, E. M. Dianov, A. Dragomir, and D. N. Nikogosyan, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Quantum Electron 33, 728–730 (2003).

Other (6)

A. Othonos and K. Kalli, Fiber Bragg Gratings, (Artech House, Boston, 1999) p 97.

E. G. Chen157-nm radiation-induced Bragg gratings in silica optical waveguides M.A.Sc, University of Toronto2003 (http://proquest.umi.com/login).

A. M. Johnson, Refractive Index Modification and the Inscription of Fibre Bragg Gratings using 157nm Laser Light, PhD Thesis University of Hull 2005 (www.fbg157nm.com).

H. J. Booth, E. K. Illy, M. R. H. Knowles, G. T. Purves, and A. J. Kearsley, Proc. ICALEO, Orlando, M203 (2001).

K. P. Chen, P. R. Herman, and R. Tam, “157-nm F2 laser photosensitivity and photosensitization in optical fibres,” in Bragg Grating, Photosensitivity and Poling in Glass Waveguides, OSA Tech Digest July (2001).

P. R. Herman, K. P. Chen, S. Ng, J. Zhang, D. Coric, P. Corkum, M. Mehendale, A. Naumov, and D. Rayner, “Photosensitivity in glasses: comparing ultrafast lasers with vacuum-ultraviolet lasers,” OSA TOPS 56, Conf. on Lasers and Electro-Optics, Tech Digest p490 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Linewidth of spectral reflection response and effective index change Δneff versus dose for SMF-28 fibre exposed using the 157nm F2 laser. Uniform grating of length =8mm; exposure fluence =58mJcm-2 per pulse.

Fig. 2.
Fig. 2.

Spectral transmission and reflectivity of fibre Bragg grating written in SMF 28 fibre using the 157nm F2 laser. Grating length =8mm; fluence =58mJcm-2 per pulse.

Fig. 3.
Fig. 3.

Comparison of spectral reflectivity of FBG in HI-980 and SMF-28 fibre versus 157nm laser dose. Fluence per pulse ~58mJcm-2. The solid line represents the modulation amplitude of refractive index for SMF 28 fibre.

Fig. 4.
Fig. 4.

In-fibre optical energy density (power density) as a function of normalized distances x/Λ and y/Λ parallel and normal to phase mask surface respectively. y/Λ runs from 58-66 to nominally overlap the fibre core. Mask period Λ=1060nm, un-polarized 157nm beam with full-angle divergence =0.003rad. Interference field calculated taking account of vector fields for s and p components using fibre refractive index =1.67 at 157nm. Phase mask order efficiencies based on energy distributions: zero =4%, ±1 order =43.3%, ±2 order =2.8%, ±3 order =1%, ±4 order =0.74%, ±5 and ±6 orders =0%.

Metrics