Abstract

Aiming to equip commercial camera modules, such as the optical imaging systems with a CMOS sensor module in 3 Mega pixels, an ultra thin liquid crystal lens with designed hole-and-ring electrodes is proposed in this study to achieve high focusing power. The LC lens with proposed electrodes improves the central intensity of electric field which leads to better focusing quality. The overall thickness of the LC lens can be as thin as 1.2 mm and the shortest focal length of the 4 mm-aperture lens occurs at 20 cm under an applied voltage of 30 V at 1 KHz. The inner ring electrode requires only 40% of applied voltage of the external hole electrode. The applied voltages for this internal ring and external hole electrodes can simply be realized by a pre-designed parallel resistance pair and a single voltage source. Experiments are conducted for validation and it shows that the designed LC lens owns good image clearness and contrast at the focal plane. The proposed design reduces the thickness of LC lens and is capable of achieving relative higher focusing power than past studies with lower applied voltage.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
    [CrossRef]
  2. H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
    [CrossRef]
  3. H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
    [CrossRef]
  4. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
    [CrossRef] [PubMed]
  5. M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).
  6. H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
    [CrossRef]
  7. T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
    [CrossRef]
  8. B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
    [CrossRef]
  9. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
    [CrossRef]
  10. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt. Express 14, 11292-11298 (2006)
    [CrossRef] [PubMed]
  11. P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
    [CrossRef]
  12. M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
    [CrossRef]
  13. B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
    [CrossRef]
  14. M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
    [CrossRef]
  15. N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
    [CrossRef]
  16. Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
    [CrossRef] [PubMed]
  17. V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
    [CrossRef]
  18. M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
    [CrossRef]
  19. M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
    [CrossRef]
  20. M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
    [CrossRef]
  21. M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
    [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

2007

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
[CrossRef] [PubMed]

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

2006

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt. Express 14, 11292-11298 (2006)
[CrossRef] [PubMed]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
[CrossRef]

V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
[CrossRef]

2005

B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
[CrossRef] [PubMed]

2004

M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
[CrossRef]

M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
[CrossRef]

2003

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

2002

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
[CrossRef]

2001

M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
[CrossRef]

1989

T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

1983

N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
[CrossRef]

1979

S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Clark, N. A.

N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
[CrossRef]

Fan, Y. H.

Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

Fox, D. W.

Galstian, T. V.

V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
[CrossRef]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

Hands, P. J. W.

P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
[CrossRef]

Handschy, M. A.

N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
[CrossRef]

Hayasaka, S.

M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
[CrossRef]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
[CrossRef]

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

Kirby, A. K.

P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
[CrossRef]

Lagerwall, S. T.

N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
[CrossRef]

Love, G. D.

P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
[CrossRef]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
[CrossRef]

T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt. Express 14, 11292-11298 (2006)
[CrossRef] [PubMed]

Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

Reshetnyak, V. Y.

V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
[CrossRef]

Sato, S.

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
[CrossRef]

M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
[CrossRef]

M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
[CrossRef]

M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
[CrossRef]

T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Subota, S. L.

V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
[CrossRef]

Wang, B.

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

Wu, B.

Wu, S. T.

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt. Express 14, 11292-11298 (2006)
[CrossRef] [PubMed]

Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
[CrossRef] [PubMed]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
[CrossRef]

M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
[CrossRef]

M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
[CrossRef]

M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

Appl. Phys. Lett.

H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006).

Jpn. J. Appl. Phys.

S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
[CrossRef]

M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
[CrossRef]

M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
[CrossRef]

Jpn. J. of Appl. Phys.

M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004).
[CrossRef]

Liq. Cryst.

T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst.

B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005).
[CrossRef]

N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
[CrossRef]

M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
[CrossRef]

V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
[CrossRef]

Opt. Commun.

B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
[CrossRef]

M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
[CrossRef]

Opt. Express

Proc. SPIE

P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

a) Structure for hole-and-ring LC lens; (b) Top view of the proposed LC lens.

Fig. 2.
Fig. 2.

Photography of proposed novel hole-and-ring LC lens.

Fig. 3.
Fig. 3.

(a) Experiment apparatus; Interference ring patterns of (b) conventional hole type LC lens and (c) Novel hole-and-ring type LC lens.

Fig. 4.
Fig. 4.

(a) Phase retardation under different applied voltages; (b)Focal length versus applied voltage.

Fig. 5.
Fig. 5.

Power intensity on the focal plane.

Fig. 6.
Fig. 6.

Experiment apparatus for testing image quality.

Fig. 7.
Fig. 7.

Images taken by a CMOS camera module with proposed LC lens under the applied voltage (a) Vh =0 V; (b) Vh =30 V.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = r 2 2 λ N ,

Metrics