Abstract

An approach that allows superresolution imaging of three-dimensional (3-D) samples by numerical refocusing is presented in the field of digital holographic microscopy. Based on the object’s spectrum shift produced by tilted illumination, we present a time multiplexing superresolved approach to overcome the Abbe’s diffraction limit. The proposed approach uses a microscope in a Mach-Zehnder interferometric architecture with the particularity that the output plane does not coincide with the image plane. Thus, a set of off-axis non-image plane holograms are sequentially recorded for every tilted beam used in the illumination stage. After that and by using simple digital post-processing and numerical reconstruction, a 3-D superresolved sample volume is reconstructed slice-by-slice in terms of the definition of a synthetic aperture (SA) that expands the cutoff frequency of the microscope lens. Experimental results showing the capabilities of the proposed approach are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. U. Schnars and W. P. Jueptner, Digital Holography, (Springer, 2005).
  3. T. Kreis, Hankbook of holographic interferometry: optical and digital methods (Wiley-VCH, 2005).
  4. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  5. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  6. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, and Ch. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  8. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
    [CrossRef]
  9. S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
    [CrossRef]
  10. A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
    [CrossRef]
  11. B. W. Schilling, T.-Ch. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
    [CrossRef]
  12. E. Cuche, P. Marquet, and Ch. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  13. F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  15. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
    [CrossRef] [PubMed]
  16. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005).
    [CrossRef] [PubMed]
  17. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  19. J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
    [CrossRef] [PubMed]
  20. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, "Extended focused image in microscopy by digital holography," Opt. Express 13, 6738-6749 (2005).
    [CrossRef] [PubMed]
  21. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
    [CrossRef] [PubMed]
  22. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  23. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
    [CrossRef]
  24. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
    [CrossRef]
  25. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffuse illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
    [CrossRef]
  26. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  27. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  28. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
    [CrossRef] [PubMed]
  29. C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef] [PubMed]
  30. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
    [CrossRef] [PubMed]
  31. V. Mico, Z. Zalevsky, and J. García, "Superresolution Optical System by Common-Path Interferometry," Opt. Express 14, 5168-5177 (2006).
    [CrossRef] [PubMed]
  32. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic Aperture Superresolution Using Multiple Off-axis Holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006).
    [CrossRef]
  33. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
    [CrossRef] [PubMed]
  34. J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
    [CrossRef]
  35. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
    [CrossRef] [PubMed]
  36. V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
    [CrossRef]
  37. V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
    [CrossRef]
  38. A. Neumann, Y. Kuznetsova, and S. R. Brueck, "Structured illumination for the extension of imaging interferometric microscopy," Opt. Express 16, 6785-6793 (2008).
    [CrossRef] [PubMed]
  39. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
    [CrossRef]

2008 (2)

V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

A. Neumann, Y. Kuznetsova, and S. R. Brueck, "Structured illumination for the extension of imaging interferometric microscopy," Opt. Express 16, 6785-6793 (2008).
[CrossRef] [PubMed]

2007 (4)

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
[CrossRef] [PubMed]

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
[CrossRef]

2006 (9)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, "Superresolution Optical System by Common-Path Interferometry," Opt. Express 14, 5168-5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic Aperture Superresolution Using Multiple Off-axis Holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

2005 (4)

2003 (2)

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

2000 (3)

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
[CrossRef]

1999 (5)

1997 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1964 (1)

1963 (1)

1962 (1)

1948 (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Alferi, D.

Alfieri, D.

Aspert, N.

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Bevilacqua, F.

Bingham, P. R.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Brooker, G.

Brueck, S. R.

Brueck, S. R. J.

Charrière, F.

Colomb, T.

Coppola, G.

Cuche, E.

De Nicola, S.

De Petrocellis, L.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, Ch.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, Ch.

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

Dürr, F.

Emery, Y.

Ferraro, P.

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Finizio, A.

Froning, P.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Gabor, D.

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Grilli, S.

Indebetouw, G.

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Joannes, L.

Katz, J.

Kim, M. K.

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Klages, P.

Kreuzer, H. J.

Kühn, J.

Kuznetsova, Y.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Legros, J.-C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

Leith, E. N.

Limberger, H. G.

Magistretti, P. J.

Magro, C.

Malkiel, E.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Marquet, P.

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Massig, J. H.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Mico, V.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Montfort, F.

Murata, S.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Neumann, A.

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Pedrini, G.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Pierattini, G.

Poon, T.-Ch.

Price, J. R.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Rappaz, B.

Rosen, J.

Salathé, R.-P.

Santoyo, F.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Schilling, B. W.

Schwarz, C. J.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Sheng, J.

Shinoda, K.

Stadelmaier, A.

Storrie, B.

Striano, V.

Suzuki, Y.

Tada, Y.

Thomas, C. E.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Tiziani, H.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Upatnieks, J.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Wu, M. H.

Xu, W.

Yasuda, N.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

Yu, L.

Zalevsky, Z.

Appl. Opt. (10)

E. Cuche, P. Marquet, and Ch. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
[CrossRef] [PubMed]

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Biomed. Opt. (1)

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (4)

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Opt. Lett. (8)

A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
[CrossRef]

B. W. Schilling, T.-Ch. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef] [PubMed]

C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and Ch. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Other (3)

U. Schnars and W. P. Jueptner, Digital Holography, (Springer, 2005).

T. Kreis, Hankbook of holographic interferometry: optical and digital methods (Wiley-VCH, 2005).

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

Supplementary Material (2)

» Media 1: MOV (1968 KB)     
» Media 2: MOV (2185 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the experimental arrangement for 3-D superresolution imaging.

Fig. 2.
Fig. 2.

Pictures of the experimental setup at the laboratory. Each optical element in case (a) can be identified from Fig. 1. Case (b) represents the magnified area corresponding with the white rectangle depicted in case (a).

Fig. 3.
Fig. 3.

Schematic chart of the used methodology used where the images depicted in the chart correspond with experimental results obtained with the proposed approach.

Fig. 4.
Fig. 4.

Examples of three different off-axis recorded holograms and their Fourier transformations corresponding with on-axis illumination [(a) and (d)] and tilted illumination: vertical [(b) and (e)] and oblique [(c) and (f)].

Fig. 5.
Fig. 5.

Generated SA for a given propagation distance.

Fig. 6.
Fig. 6.

Image sequence when considering propagation at arbitrary distances for conventional imaging mode (left column) and imaging using the proposed approach (right column). (Media 1) and (Media 2) start with cases (a) and (e) and represent the focusing sequence of low resolution and superresolved imaging, respectively. Scale bars in cases (a) and (e) are 10 µm.

Fig. 7.
Fig. 7.

Comparison between tail sperm cross sections corresponding with conventional imaging mode (solid plot) and applying the proposed approach (dashed plot). Horizontal axis corresponds with linear distance in µm.

Metrics