Abstract

An approach that allows superresolution imaging of three-dimensional (3-D) samples by numerical refocusing is presented in the field of digital holographic microscopy. Based on the object’s spectrum shift produced by tilted illumination, we present a time multiplexing superresolved approach to overcome the Abbe’s diffraction limit. The proposed approach uses a microscope in a Mach-Zehnder interferometric architecture with the particularity that the output plane does not coincide with the image plane. Thus, a set of off-axis non-image plane holograms are sequentially recorded for every tilted beam used in the illumination stage. After that and by using simple digital post-processing and numerical reconstruction, a 3-D superresolved sample volume is reconstructed slice-by- slice in terms of the definition of a synthetic aperture (SA) that expands the cutoff frequency of the microscope lens. Experimental results showing the capabilities of the proposed approach are presented.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. U. Schnars and W. P. Jueptner, Digital Holography, (Springer, 2005).
  3. T. Kreis, Hankbook of holographic interferometry: optical and digital methods (Wiley-VCH, 2005).
  4. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  5. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef]
  6. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, and Ch. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  8. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
    [CrossRef]
  9. S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
    [CrossRef]
  10. A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
    [CrossRef]
  11. B. W. Schilling, T.-Ch. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
    [CrossRef]
  12. E. Cuche, P. Marquet, and Ch. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  13. F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef]
  15. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
    [CrossRef]
  16. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005).
    [CrossRef]
  17. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [CrossRef]
  19. J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
    [CrossRef]
  20. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, "Extended focused image in microscopy by digital holography," Opt. Express 13, 6738-6749 (2005).
    [CrossRef]
  21. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
    [CrossRef]
  22. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef]
  23. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
  24. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
  25. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffuse illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964).
  26. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef]
  27. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
    [CrossRef]
  28. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
    [CrossRef]
  29. C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef]
  30. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
    [CrossRef]
  31. V. Mico, Z. Zalevsky, and J. García, "Superresolution Optical System by Common-Path Interferometry," Opt. Express 14, 5168-5177 (2006).
    [CrossRef]
  32. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic Aperture Superresolution Using Multiple Off-axis Holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006).
    [CrossRef]
  33. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
    [CrossRef]
  34. J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
    [CrossRef]
  35. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
    [CrossRef]
  36. V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
    [CrossRef]
  37. V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
    [CrossRef]
  38. A. Neumann, Y. Kuznetsova, and S. R. Brueck, "Structured illumination for the extension of imaging interferometric microscopy," Opt. Express 16, 6785-6793 (2008).
    [CrossRef]
  39. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
    [CrossRef]

2008

V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

A. Neumann, Y. Kuznetsova, and S. R. Brueck, "Structured illumination for the extension of imaging interferometric microscopy," Opt. Express 16, 6785-6793 (2008).
[CrossRef]

2007

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007).
[CrossRef]

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
[CrossRef]

2006

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Superresolution Optical System by Common-Path Interferometry," Opt. Express 14, 5168-5177 (2006).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic Aperture Superresolution Using Multiple Off-axis Holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
[CrossRef]

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

2005

2003

2001

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef]

2000

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
[CrossRef]

1999

1997

1967

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1964

1963

1962

1948

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef]

Alferi, D.

Alfieri, D.

Aspert, N.

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Bevilacqua, F.

Bingham, P. R.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Brooker, G.

Brueck, S. R.

Brueck, S. R. J.

Charrière, F.

Colomb, T.

Coppola, G.

Cuche, E.

De Nicola, S.

De Petrocellis, L.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Decaestecker, Ch.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Depeursinge, Ch.

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

Dürr, F.

Emery, Y.

Ferraro, P.

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Finizio, A.

Froning, P.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Gabor, D.

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Grilli, S.

Indebetouw, G.

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Joannes, L.

Katz, J.

Kim, M. K.

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Klages, P.

Kreuzer, H. J.

Kühn, J.

Kuznetsova, Y.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Legros, J.-C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

Leith, E. N.

Limberger, H. G.

Magistretti, P. J.

Magro, C.

Malkiel, E.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Marquet, P.

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Massig, J. H.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef]

Mico, V.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Montfort, F.

Murata, S.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Neumann, A.

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Pedrini, G.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Pierattini, G.

Poon, T.-Ch.

Price, J. R.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Rappaz, B.

Rosen, J.

Salathé, R.-P.

Santoyo, F.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Schilling, B. W.

Schwarz, C. J.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Sheng, J.

Shinoda, K.

Stadelmaier, A.

Storrie, B.

Striano, V.

Suzuki, Y.

Tada, Y.

Thomas, C. E.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

Tiziani, H.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Upatnieks, J.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Wu, M. H.

Xu, W.

Yasuda, N.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

Yu, L.

Zalevsky, Z.

Appl. Opt.

J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007).
[CrossRef]

F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

E. Cuche, P. Marquet, and Ch. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006).
[CrossRef]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007).
[CrossRef]

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Biomed. Opt.

F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef]

Opt. Commun.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Opt. Eng.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000)
[CrossRef]

Opt. Express

Opt. Laser Technol.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Opt. Lett.

B. W. Schilling, T.-Ch. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

E. Cuche, F. Bevilacqua, and Ch. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000).
[CrossRef]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
[CrossRef]

C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef]

P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef]

Other

U. Schnars and W. P. Jueptner, Digital Holography, (Springer, 2005).

T. Kreis, Hankbook of holographic interferometry: optical and digital methods (Wiley-VCH, 2005).

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

Supplementary Material (2)

» Media 1: MOV (1968 KB)     
» Media 2: MOV (2185 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics